Home
Class 9
MATHS
Solve for x : (a^(3x+5))^(2) . (a^(x)...

Solve for x :
`(a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a^{3x+5})^{2} \cdot (a^{x})^{4} = a^{8x+12}\), we will follow these steps: ### Step 1: Apply the Power of a Power Rule Using the identity \((a^m)^n = a^{m \cdot n}\), we can simplify the left side of the equation: \[ (a^{3x+5})^{2} = a^{2(3x+5)} = a^{6x + 10} \] \[ (a^{x})^{4} = a^{4x} \] ### Step 2: Combine the Exponents Now, we can rewrite the left side of the equation by combining the exponents: \[ a^{6x + 10} \cdot a^{4x} = a^{(6x + 10) + 4x} = a^{10x + 10} \] ### Step 3: Set the Exponents Equal Now that we have simplified both sides, we can set the exponents equal to each other since the bases are the same: \[ 10x + 10 = 8x + 12 \] ### Step 4: Solve for \(x\) Now, we will solve for \(x\): 1. Subtract \(8x\) from both sides: \[ 10x - 8x + 10 = 12 \] \[ 2x + 10 = 12 \] 2. Subtract \(10\) from both sides: \[ 2x = 12 - 10 \] \[ 2x = 2 \] 3. Divide both sides by \(2\): \[ x = 1 \] ### Final Answer Thus, the solution for \(x\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : (a^(3x+3)xx(a^(3))^(4))=a^(8x+12)

Solve for x if 4x(5-3x)= -2

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

Solve: 8x - 5 = 3x + 55

Solve : -12 le 4 + (3x)/(5) le 2

Solve : 5x - 7 = 2x+ 8

Solve : (x)/(6)ge (8-3x)/(2) +4

Solve : 3((3x)/(5) + 4) ge 2(x-6)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |