Home
Class 9
MATHS
Solve for x : (81)^((3)/(4))-((1)/(32))^...

Solve for x : `(81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (81)^{\frac{3}{4}} - \left(\frac{1}{32}\right)^{-\frac{2}{5}} + x\left(\frac{1}{2}\right)^{-1} \cdot 2^{0} = 27 \), we will follow these steps: ### Step 1: Rewrite the terms using exponents First, we will express the numbers in terms of their base and exponent forms. - \( 81 = 3^4 \), so \( (81)^{\frac{3}{4}} = (3^4)^{\frac{3}{4}} = 3^{4 \cdot \frac{3}{4}} = 3^3 \). - \( \frac{1}{32} = 32^{-1} = (2^5)^{-1} = 2^{-5} \), thus \( \left(\frac{1}{32}\right)^{-\frac{2}{5}} = (2^{-5})^{-\frac{2}{5}} = 2^{5 \cdot \frac{2}{5}} = 2^2 \). - \( \left(\frac{1}{2}\right)^{-1} = 2^1 \) and \( 2^0 = 1 \). So we can rewrite the equation as: \[ 3^3 - 2^2 + x \cdot 2^1 \cdot 1 = 27 \] ### Step 2: Simplify the equation Now we can simplify the equation: \[ 3^3 - 2^2 + 2x = 27 \] Calculating \( 3^3 \) and \( 2^2 \): \[ 27 - 4 + 2x = 27 \] ### Step 3: Solve for \( x \) Next, we can simplify further: \[ 27 - 4 = 23 \] So the equation becomes: \[ 23 + 2x = 27 \] Now, isolate \( 2x \): \[ 2x = 27 - 23 \] \[ 2x = 4 \] Finally, divide by 2: \[ x = \frac{4}{2} = 2 \] ### Final Answer Thus, the value of \( x \) is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : sqrt(((3)/(5))^(1-2x))=4(17)/(27)

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Solve for : 2/(x+1)+3/(2(x-2))=(23)/(5x);x!=0,-1,2

Solve for x : 3^(4x + 1) = (27)^(x + 1)

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve the equations: 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1) .

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |