Home
Class 9
MATHS
Solve for x : 3(2^(x) + 1) - 2^(x + 2...

Solve for x :
`3(2^(x) + 1) - 2^(x + 2)) + 5 = 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3(2^x + 1) - 2^{x + 2} + 5 = 0 \), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting the equation for clarity: \[ 3(2^x + 1) - 2^{x + 2} + 5 = 0 \] ### Step 2: Distribute the 3 Distributing the 3 into the parentheses gives: \[ 3 \cdot 2^x + 3 - 2^{x + 2} + 5 = 0 \] ### Step 3: Combine like terms Combine the constant terms (3 and 5): \[ 3 \cdot 2^x - 2^{x + 2} + 8 = 0 \] ### Step 4: Rewrite \(2^{x + 2}\) Recall that \(2^{x + 2} = 2^x \cdot 2^2 = 4 \cdot 2^x\). Substitute this back into the equation: \[ 3 \cdot 2^x - 4 \cdot 2^x + 8 = 0 \] ### Step 5: Combine the terms with \(2^x\) Now combine the terms involving \(2^x\): \[ (3 - 4) \cdot 2^x + 8 = 0 \] This simplifies to: \[ -1 \cdot 2^x + 8 = 0 \] ### Step 6: Isolate \(2^x\) Rearranging gives: \[ -2^x = -8 \] Thus: \[ 2^x = 8 \] ### Step 7: Rewrite 8 as a power of 2 Recognizing that \(8 = 2^3\), we can equate the exponents: \[ 2^x = 2^3 \] ### Step 8: Solve for \(x\) Since the bases are the same, we can set the exponents equal to each other: \[ x = 3 \] ### Final Answer Thus, the solution is: \[ x = 3 \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve : 3x + 2 (x+2) = 20 - (2x -5)

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .

Solve the equation: 3(2^x+1)-2^(x+2)+5=0

Solve (x-1 )(x-2)(1-2x) gt 0

Solve : x + 2 ge 0 and 2x - 5 le 0

Solve for : 2/(x+1)+3/(2(x-2))=(23)/(5x);x!=0,-1,2

Solve for : 1/(x-3)+2/(x-2)=8/x ; x!=0,2,3

Solve (x-1)(x-2)(1-2x) gt 0 .

Solve: [x]^3 - 2[x] +1 = 0 ,

Solve : 2x^(2)-3x+5 lt 0

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |