Home
Class 9
MATHS
Solve for x : 9^(x + 2)) = 720 + 9^(x...

Solve for x :
`9^(x + 2)) = 720 + 9^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9^{(x + 2)} = 720 + 9^x \), we can follow these steps: ### Step 1: Rewrite the left-hand side Using the property of exponents, we can rewrite \( 9^{(x + 2)} \) as \( 9^2 \cdot 9^x \): \[ 9^{(x + 2)} = 9^2 \cdot 9^x \] So the equation becomes: \[ 9^2 \cdot 9^x = 720 + 9^x \] ### Step 2: Substitute \( 9^2 \) Since \( 9^2 = 81 \), we can substitute this into the equation: \[ 81 \cdot 9^x = 720 + 9^x \] ### Step 3: Rearrange the equation Next, we can rearrange the equation to isolate terms involving \( 9^x \): \[ 81 \cdot 9^x - 9^x = 720 \] Factoring out \( 9^x \) gives us: \[ (81 - 1) \cdot 9^x = 720 \] This simplifies to: \[ 80 \cdot 9^x = 720 \] ### Step 4: Solve for \( 9^x \) Now, divide both sides by 80: \[ 9^x = \frac{720}{80} \] Calculating the right-hand side: \[ 9^x = 9 \] ### Step 5: Solve for \( x \) Since \( 9^x = 9 \), we can express 9 as \( 9^1 \): \[ 9^x = 9^1 \] Since the bases are the same, we can equate the exponents: \[ x = 1 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : (x + 2)/(4 + x) = 5/9

Solve for x : 9xx3^(x)=(27)^(2x-5)

Solve : 5x-6 = 9

Solve : 3^(x2) : 3^(x) = 9 : 1

Solve for x and y : y = 2x + 9 and 7x + 3y = -51

Solve : 2^(2x +3) - 9 xx 2^(x) + 1 = 0

Solve : | x-3| + | x - 5| gt 9

Solve (15)/4 -7 x = 9

Determine (8x)^x , if 9^(x+2)=240+9^x

Solve 9x^(2)-12x +25=0

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (B)
  1. Solve : 3^(x2) : 3^(x) = 9 : 1

    Text Solution

    |

  2. Solve : 8 xx 2^(2x) + 4 xx 2^(x +1) = 1 + 2^(x)

    Text Solution

    |

  3. Solve : 2^(2x) + 2^(x+2) - 4 xx 2^(3) = 0

    Text Solution

    |

  4. Solve : (sqrt(3))^(x-3)=(sqrt(3))^((x+1)/4)

    Text Solution

    |

  5. Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqr...

    Text Solution

    |

  6. Solve for x and y if : (sqrt(32))^(x)÷2^(y+1)= 1 and 8^(y)-16^(4-(x)...

    Text Solution

    |

  7. If x is a positive real number and the exponents are rational numbe...

    Text Solution

    |

  8. Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2...

    Text Solution

    |

  9. If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

    Text Solution

    |

  10. If a^x=b^y=c^2a n d\ b^2=a c , prove that y=(2x z)/(x+z)

    Text Solution

    |

  11. If 5^(-p)=4^(-q)=20^(r ). Show that (1)/(p)+(1)/(q)+(1)/(r )=0

    Text Solution

    |

  12. If m =! n and (m + n)^(-1) (m^(-1) + n^(-1)) = m^(x) n^(y), show that ...

    Text Solution

    |

  13. If 5^(x +1) = 25^(x-2), find the value of 3^(x-3) xx 2^(3-x).

    Text Solution

    |

  14. If 4^(x+3)=112+8xx4^(x), find (18x)^(3x)

    Text Solution

    |

  15. Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

    Text Solution

    |

  16. Solve for x : (a^(3x+5))^(2) . (a^(x))^(4) = a^(8x+12).

    Text Solution

    |

  17. Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(...

    Text Solution

    |

  18. Solve for x : 2^((3x + 3)) = 2^((3x + 1)) + 48.

    Text Solution

    |

  19. Solve for x : 3(2^(x) + 1) - 2^(x + 2)) + 5 = 0.

    Text Solution

    |

  20. Solve for x : 9^(x + 2)) = 720 + 9^(x)

    Text Solution

    |