Home
Class 9
MATHS
Simplify : (3xx9^(n+1)-9xx3^(2n))/(3x...

Simplify :
`(3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3 \cdot 9^{(n+1)} - 9 \cdot 3^{(2n)}) / (3 \cdot 3^{(2n+3)} - 9^{(n+1)})\), we will follow these steps: ### Step 1: Rewrite the terms using powers of 3 We know that \(9 = 3^2\). Therefore, we can rewrite \(9^{(n+1)}\) as \((3^2)^{(n+1)} = 3^{2(n+1)} = 3^{(2n + 2)}\). So, the expression becomes: \[ \frac{3 \cdot 3^{(2n + 2)} - 9 \cdot 3^{(2n)}}{3 \cdot 3^{(2n + 3)} - 3^{(2(n+1))}} \] ### Step 2: Simplify the numerator Now, we can simplify the numerator: \[ 3 \cdot 3^{(2n + 2)} - 9 \cdot 3^{(2n)} = 3^{(1 + 2n + 2)} - 9 \cdot 3^{(2n)} = 3^{(2n + 3)} - 3^{(2)} \cdot 3^{(2n)} = 3^{(2n + 3)} - 3^{(2n + 2)} \] ### Step 3: Factor out common terms in the numerator The numerator can be factored: \[ 3^{(2n + 2)}(3 - 1) = 3^{(2n + 2)} \cdot 2 \] ### Step 4: Simplify the denominator Now, let's simplify the denominator: \[ 3 \cdot 3^{(2n + 3)} - 9^{(n + 1)} = 3 \cdot 3^{(2n + 3)} - 3^{(2(n + 1))} = 3^{(1 + 2n + 3)} - 3^{(2n + 2)} = 3^{(2n + 4)} - 3^{(2n + 2)} \] ### Step 5: Factor out common terms in the denominator The denominator can be factored: \[ 3^{(2n + 2)}(3^2 - 1) = 3^{(2n + 2)}(9 - 1) = 3^{(2n + 2)} \cdot 8 \] ### Step 6: Combine the simplified numerator and denominator Now, substituting back into the expression, we have: \[ \frac{3^{(2n + 2)} \cdot 2}{3^{(2n + 2)} \cdot 8} \] ### Step 7: Cancel out the common terms The \(3^{(2n + 2)}\) terms cancel out: \[ \frac{2}{8} = \frac{1}{4} \] ### Final Answer Thus, the simplified expression is: \[ \frac{1}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Simplify : (3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

Simplify : (8^(3a)xx2^(5)xx2^(2a))/(8xx3^(3n)-5xx27^(n))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Simplify: (i) (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)

Simplify : (3x^(2))^(-3)xx(x^(9))^((2)/(3))

Simplify the following: (i)\ (3^n\ xx\ 9^(n+1))/(3^(n-1)\ xx\ 9^(n-1)) ,

Simplify: (i) (3^5)^(11)xx(3^(15))^4-(3^5)^(18)xx(3^5)^5 , (ii) (16xx2^(n+1)-4xx2^n)/(16xx2^(n+2)-2xx2^(n+2))

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  2. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  3. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  4. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  5. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  6. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  7. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  8. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  9. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  10. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  11. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  12. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  13. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  14. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  15. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  16. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  17. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  18. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  19. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |