Home
Class 9
MATHS
Solve : 3^(x-1)xx5^(2y-3)=225....

Solve : `3^(x-1)xx5^(2y-3)=225.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{(x-1)} \times 5^{(2y-3)} = 225 \), we can follow these steps: ### Step 1: Rewrite 225 in terms of its prime factors First, we need to express 225 as a product of its prime factors. \[ 225 = 15 \times 15 = (3 \times 5) \times (3 \times 5) = 3^2 \times 5^2 \] ### Step 2: Set up the equation with the same bases Now we can rewrite the original equation with the prime factorization of 225: \[ 3^{(x-1)} \times 5^{(2y-3)} = 3^2 \times 5^2 \] ### Step 3: Compare the powers of the same bases Since the bases on both sides of the equation are the same, we can equate the exponents for each base. 1. For the base 3: \[ x - 1 = 2 \] 2. For the base 5: \[ 2y - 3 = 2 \] ### Step 4: Solve for \( x \) From the equation \( x - 1 = 2 \): \[ x = 2 + 1 = 3 \] ### Step 5: Solve for \( y \) From the equation \( 2y - 3 = 2 \): \[ 2y = 2 + 3 = 5 \] \[ y = \frac{5}{2} \] ### Final Solution Thus, the values we found are: \[ x = 3 \quad \text{and} \quad y = \frac{5}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve 5^(x+1)+5^(2-x)=5^3+1

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

Solve : (1)/(3)x-6=(5)/(2)

Solve : 5^(x)= 25 xx 5 ^(y) and 8 xx 2 ^(y) = 4 ^(x)

Solve: 1/3x-5/2=6

Solve: 7+{3xx(9-3xx2)-1}

Solve : (3)/(x)-(2)/(y)=0 and (2)/(x)+(5)/(y)=19 . Hence , find 'a' if y=ax+3

Solve: 2/(5x)-5/(3x)=1/(15)

Solve for x : 9xx3^(x)=(27)^(2x-5)

Solve : 8 ^(x+1) = 16 ^(y+2) and ( (1)/(2)) ^(3+x) = ((1)/(4))^(3y)

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  2. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  3. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  4. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  5. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  6. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  7. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  8. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  9. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  10. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  11. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  12. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  13. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  14. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  15. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  16. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  17. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  18. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  19. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |