Home
Class 9
MATHS
If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(...

If `((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x).b^(y),` find x + y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\frac{a^{-1}b^{2}}{a^{2}b^{-4}}}{\frac{a^{3}b^{-5}}{a^{-2}b^{3}}} = a^{x}b^{y} \] and find \(x + y\), we will follow these steps: ### Step 1: Simplify the numerator and denominator Start with the expression: \[ \frac{a^{-1}b^{2}}{a^{2}b^{-4}} \] This can be simplified by applying the property of exponents: \[ = a^{-1}b^{2} \cdot a^{-2}b^{4} = a^{-1 - 2}b^{2 + 4} = a^{-3}b^{6} \] Now, simplify the denominator: \[ \frac{a^{3}b^{-5}}{a^{-2}b^{3}} = a^{3}b^{-5} \cdot a^{2}b^{-3} = a^{3 + 2}b^{-5 - 3} = a^{5}b^{-8} \] ### Step 2: Rewrite the entire expression Now, we can rewrite the entire expression: \[ \frac{a^{-3}b^{6}}{a^{5}b^{-8}} = a^{-3}b^{6} \cdot a^{-5}b^{8} = a^{-3 - 5}b^{6 + 8} = a^{-8}b^{14} \] ### Step 3: Set the expression equal to \(a^{x}b^{y}\) Now we have: \[ a^{-8}b^{14} = a^{x}b^{y} \] ### Step 4: Compare the exponents From the equation above, we can compare the exponents: - For \(a\): \(x = -8\) - For \(b\): \(y = 14\) ### Step 5: Calculate \(x + y\) Now, we need to find \(x + y\): \[ x + y = -8 + 14 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

If a\ a n d\ b are different positive primes such that (i)\ ((a^(-1)\ b^2)/(a^2b^(-4)))^7-:((a^3\ b^(-5))/(a^(-2)b^3))=a^x b^y , find x\ a n d\ y (ii)\ (a+b)^(-1)\ (a^(-1)+b^(-1))=\ a^x b^y , find x+y+2

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x+y-z

If x=2a^(2)+3b^(2)-5ab, y=b^(2)-3a^(2)+7ab and z=6a^(2)-b^(2)+ab , find: x-y+z

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

(a-b)x+ (a+b)y=a^2-2ab-b^2 , (a+b)(x+y)=a^2+b^2 find x and y

If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c , find c in terms of x and y.

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

Find the angle between the lines , (a^(2) - ab) y = (ab+b^(2))x+b^(3) , and (ab+b^(2)) y = (ab-a^2)x+a^(3) where a lt b lt 0

For any a ,\ b ,\ x ,\ y >0 , prove that : 2/3tan^(-1)((3a b^2-a^3)/(b^3-3a^2b))+2/3tan^(-1)((3x y^2-x^3)/(y^3-3x^2y))=tan^(-1)(2alphabeta)/(alpha^2-beta^2) , where alpha=-a x+b y beta=b x+a ydot

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  2. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  3. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  4. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  5. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  6. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  7. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  8. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  9. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  10. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  11. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  12. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  13. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  14. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  15. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  16. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  17. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  18. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  19. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |