Home
Class 9
MATHS
Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)...

Solve for x : `x:(13)^sqrt(x)=4^(4)-3^(4)-6.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x:(13)^{\sqrt{x}}=4^{4}-3^{4}-6 \), we will follow these steps: ### Step 1: Write the equation We start with the equation: \[ (13)^{\sqrt{x}} = 4^{4} - 3^{4} - 6 \] ### Step 2: Simplify the right-hand side First, we need to calculate \( 4^{4} \) and \( 3^{4} \): \[ 4^{4} = 256 \quad \text{and} \quad 3^{4} = 81 \] Now substitute these values back into the equation: \[ (13)^{\sqrt{x}} = 256 - 81 - 6 \] ### Step 3: Perform the subtraction Now, we simplify the right-hand side: \[ 256 - 81 = 175 \] Then, \[ 175 - 6 = 169 \] So, we have: \[ (13)^{\sqrt{x}} = 169 \] ### Step 4: Express 169 as a power of 13 Next, we can express 169 as a power of 13: \[ 169 = 13^{2} \] Thus, we can rewrite the equation as: \[ (13)^{\sqrt{x}} = (13)^{2} \] ### Step 5: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal: \[ \sqrt{x} = 2 \] ### Step 6: Solve for \( x \) Now, we square both sides to solve for \( x \): \[ x = 2^{2} = 4 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Solve for x : 3^(x-4)+5^(x-4)=34

Solve for x if x(4x-4)= -4

Solve for x: sqrt(11x-6)+sqrt(x-1)=sqrt(4x+5)

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

Solve for x : (x-1)/(x+2)+(x-3)/(x-4)=(10)/3,\ \ x!=-2,\ 4

Find the value of x in each of the following: (i)\ 5^(2x+3)=1 (ii)\ (13)^(sqrt(x))=4^4-3^4-6 (iii)\ (sqrt(3/5))^(x+1)=(125)/(27)

Solve for x :: x^(3/4(log_2(x))-(5/4))=sqrt(2) .

Solve for x and y , if : (sqrt( 27) )^(x) ÷ 3^(y+ 4) = 1 and 8^(4-(x)/(3)) - 16^y = 0 .

Solve (x^3-4x)sqrt(x^2-1)=0.

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  2. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  3. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  4. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  5. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  6. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  7. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  8. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  9. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  10. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  11. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  12. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  13. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  14. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  15. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  16. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  17. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  18. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  19. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |