Home
Class 9
MATHS
If m = root(3)(15) and n = root(3)(14), ...

If `m = root(3)(15) and n = root(3)(14)`, find the value of `m - n - (1)/(m^(2) + mn + n^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m - n - \frac{1}{m^2 + mn + n^2} \) where \( m = \sqrt[3]{15} \) and \( n = \sqrt[3]{14} \). ### Step-by-Step Solution: 1. **Identify the values of \( m \) and \( n \)**: \[ m = \sqrt[3]{15}, \quad n = \sqrt[3]{14} \] 2. **Calculate \( m - n \)**: \[ m - n = \sqrt[3]{15} - \sqrt[3]{14} \] 3. **Rewrite the expression**: We need to evaluate: \[ m - n - \frac{1}{m^2 + mn + n^2} \] 4. **Calculate \( m^2 + mn + n^2 \)**: Using the identity \( m^2 + mn + n^2 = (m-n)^2 + mn \): - First, calculate \( m^2 \) and \( n^2 \): \[ m^2 = (\sqrt[3]{15})^2 = \sqrt[3]{15^2} = \sqrt[3]{225} \] \[ n^2 = (\sqrt[3]{14})^2 = \sqrt[3]{14^2} = \sqrt[3]{196} \] - Now calculate \( mn \): \[ mn = \sqrt[3]{15} \cdot \sqrt[3]{14} = \sqrt[3]{15 \cdot 14} = \sqrt[3]{210} \] - Therefore: \[ m^2 + mn + n^2 = \sqrt[3]{225} + \sqrt[3]{210} + \sqrt[3]{196} \] 5. **Use the identity for \( m^3 - n^3 \)**: The difference of cubes can be expressed as: \[ m^3 - n^3 = (m - n)(m^2 + mn + n^2) \] - We know \( m^3 = 15 \) and \( n^3 = 14 \): \[ m^3 - n^3 = 15 - 14 = 1 \] - Thus: \[ 1 = (m - n)(m^2 + mn + n^2) \] - This implies: \[ m^2 + mn + n^2 = \frac{1}{m - n} \] 6. **Substitute back into the expression**: Now we can substitute \( m^2 + mn + n^2 \) back into the original expression: \[ m - n - \frac{1}{m^2 + mn + n^2} = m - n - (m - n) = 0 \] ### Final Answer: \[ \text{The value of } m - n - \frac{1}{m^2 + mn + n^2} \text{ is } 0. \]
Promotional Banner

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (B)|29 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

If m=root3(125) and n=root3(64) , find the value of m-n-(1)/(m^(2)+mn+n^(2)) .

If (m-5, n + 3) = (7, 9), find the values of m and n.

If m,n in N and m=(n^2-n-35)/(n-4) , then find the value of m.

If m = 1, n = 2 and p = -3, find the value of : 2mn^(4)-15m^(2)n+p

The value of (m+n)^2+(m-n)^2 is:

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and .

If (a^(m))^(n)=a^(m).a^(n) , find the value of : m(n - 1) - (n - 1)

If m = (1)/(3-2sqrt(2)) and n = (1)/(3+2sqrt(2)) find : (i) m^(2) (ii) n^(2) (iii) mn

If cos theta= (2sqrt(mn))/(m+n) , find the value of sin theta (given m > n )

Find the value of m and n : if : ( 3+ sqrt2 )/( 3- sqrt2) = m + n sqrt2

ICSE-INDICES [EXPONENTS]-EXERCISE 7 (C)
  1. Evaluate : 9^((5)/(2)) - 3xx8^(0)-((1)/(81))^(-(1)/(2))

    Text Solution

    |

  2. Evaluate : (64)^((2)/(3))-root(3)(125)-(1)/(2^(-5))+(27)^(-(2)/(3))...

    Text Solution

    |

  3. Evaluate : [(-(2)/(3))^(-2)]^(3)xx((1)/(3))^(-4)xx3^(-1)xx(1)/(6)

    Text Solution

    |

  4. Simplify : (3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

    Text Solution

    |

  5. Solve : 3^(x-1)xx5^(2y-3)=225.

    Text Solution

    |

  6. If ((a^(-1)b^(2))/(a^(2)b^(-4)))div((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)...

    Text Solution

    |

  7. If 3^(x +1) = 9^(x - 3), find the value of 2^(1 + x).

    Text Solution

    |

  8. If 2^(x)=4^(y)=8^(z) and (1)/(2x)+(1)/(4y)+(1)/(8z)=4 find the value o...

    Text Solution

    |

  9. If (9^n\ x\ 3^2\ x\ 3^n-\ 27^n)/(3^(3m)\ x\ 2^3)=1/(27) , prove that m...

    Text Solution

    |

  10. Solve for x : x:(13)^sqrt(x)=4^(4)-3^(4)-6.

    Text Solution

    |

  11. If 3^(4x)=(81)^(-1)and(10)^((1)/(y))=0.0001, value of 2^(-x) xx 16^(y)...

    Text Solution

    |

  12. Solve the equation: 3(2^x+1)-2^(x+2)+5=0

    Text Solution

    |

  13. If (a^(m))^(n)=a^(m).a^(n), find the value of : m(n - 1) - (n - 1)

    Text Solution

    |

  14. If m = root(3)(15) and n = root(3)(14), find the value of m - n - (1)/...

    Text Solution

    |

  15. Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25...

    Text Solution

    |

  16. Evaluate : ((x^(q))/(x^(r )))^((1)/(qr))xx((x^(r ))/(x^(p)))^((1)/(rp)...

    Text Solution

    |

  17. Prove that: (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(...

    Text Solution

    |

  18. Prove that: (a+b+c)/(a^(-1)\ b^(-1)+b^(-1)\ c^(-1)+c^(-1)a^(-1))=a b c

    Text Solution

    |

  19. Evaluate : (4)/((216)^(-2//3))+(1)/((256)^(-3//4))+(2)/((343)^(-1//3)...

    Text Solution

    |