Home
Class 9
MATHS
If a - (1)/(a) = 3 , find a^(2) + 3a...

If a - ` (1)/(a) = 3 , ` find ` a^(2) + 3a +(1)/(a^(2)) - (3)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a^2 + 3a + \frac{1}{a^2} - 3 \) given that \( a - \frac{1}{a} = 3 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ a - \frac{1}{a} = 3 \] 2. **Square both sides of the equation:** \[ \left(a - \frac{1}{a}\right)^2 = 3^2 \] This expands to: \[ a^2 - 2a\left(\frac{1}{a}\right) + \frac{1}{a^2} = 9 \] Simplifying gives: \[ a^2 - 2 + \frac{1}{a^2} = 9 \] 3. **Rearranging the equation:** \[ a^2 + \frac{1}{a^2} = 9 + 2 \] Therefore: \[ a^2 + \frac{1}{a^2} = 11 \] 4. **Now substitute into the expression we need to find:** The expression we need to evaluate is: \[ a^2 + 3a + \frac{1}{a^2} - 3 \] We can rewrite this as: \[ (a^2 + \frac{1}{a^2}) + 3a - 3 \] 5. **Substituting \( a^2 + \frac{1}{a^2} \):** We already found that \( a^2 + \frac{1}{a^2} = 11 \), so we substitute: \[ 11 + 3a - 3 \] 6. **Simplifying further:** \[ 11 - 3 + 3a = 8 + 3a \] 7. **Now, we need to find \( a \):** We can express \( a \) in terms of \( a - \frac{1}{a} = 3 \): From \( a - \frac{1}{a} = 3 \), we can rearrange to find \( a \): \[ a = 3 + \frac{1}{a} \] Multiplying both sides by \( a \): \[ a^2 - 3a - 1 = 0 \] Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -3, c = -1 \): \[ a = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ a = \frac{3 \pm \sqrt{9 + 4}}{2} \] \[ a = \frac{3 \pm \sqrt{13}}{2} \] 8. **Substituting \( a \) back into \( 8 + 3a \):** \[ 8 + 3\left(\frac{3 \pm \sqrt{13}}{2}\right) = 8 + \frac{9 \pm 3\sqrt{13}}{2} \] Converting \( 8 \) to a fraction: \[ = \frac{16}{2} + \frac{9 \pm 3\sqrt{13}}{2} = \frac{25 \pm 3\sqrt{13}}{2} \] ### Final Answer: Thus, the value of \( a^2 + 3a + \frac{1}{a^2} - 3 \) is: \[ \frac{25 \pm 3\sqrt{13}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a- (1)/(a) = 5 , find a^(2) +(1)/(a^(2)) - 3a + (3)/(a).

If a+ (1)/( a) = 3 , find : a^2 + (1)/(a^2)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2) - 3a -1 =0 , find the value of a^(2) +(1)/(a^(2))

If 3a+(1)/(3a) = 2sqrt3 , evaluate: 9a^(2) +(1)/( 9a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If (x^(2) + 1)/(x)= 3(1)/(3) and x gt 1 , find x^(3)- (1)/(x^(3))

If 3a+(1)/(3a) = 2sqrt3 , evaluate: 3a- (1)/(3a)

If p + 1/( p + 2 ) = 3 , find the value of ( p + 2 )^3 + 1/( p + 2 )^3