Home
Class 9
MATHS
If x^(2) +(1)/(x^(2)) = 7. find the...

If ` x^(2) +(1)/(x^(2)) = 7. ` find the values of ,
` x - (1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 7 \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x^2 + \frac{1}{x^2} = 7 \] ### Step 2: Relate \( x - \frac{1}{x} \) to \( x^2 + \frac{1}{x^2} \) We know that: \[ \left( x - \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} \] This can be rearranged to: \[ \left( x - \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} - 2 \] ### Step 3: Substitute the known value Now, we can substitute \( x^2 + \frac{1}{x^2} \) with 7: \[ \left( x - \frac{1}{x} \right)^2 = 7 - 2 \] This simplifies to: \[ \left( x - \frac{1}{x} \right)^2 = 5 \] ### Step 4: Take the square root To find \( x - \frac{1}{x} \), we take the square root of both sides: \[ x - \frac{1}{x} = \pm \sqrt{5} \] ### Final Answer Thus, the values of \( x - \frac{1}{x} \) are: \[ x - \frac{1}{x} = \sqrt{5} \quad \text{or} \quad x - \frac{1}{x} = -\sqrt{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If x^(2) +(1)/(x^(2)) = 7. find the values of , 3x^(2) - (3)/(x^(2))

If x^(2) + (1)/(x^(2))= 7 and x ne 0 , find the value of : 7x^(3) + 8x- (7)/(x^(3))- (8)/(x)

If x- (1)/ (x ) = 4 , find the value of : x^(2) + (1)/( x^(2))

If x^2+1/(x^2)=27 , find the values of each of the: x+1/x

If x^2+1/(x^2)=27 , find the values of each of the: x-1/x

Find the value of ∫1/ 2x − 2/ x + 3/ √x dx'

Find the value of (x+7)/2-(x+1)/3=(x+1)/2

If x^2+1/(x^2)=7 , find the value of x^3+1/(x^3)

If x^2+1/(x^2)=18 , find the values of x+1/x and x-1/xdot

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)