Home
Class 9
MATHS
If x^(2) +(1)/(x^(2)) = 7. find the...

If ` x^(2) +(1)/(x^(2)) = 7. ` find the values of ,
` x+(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 7 \) and find the values of \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Set up the relationship We know that: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] This can be rearranged to express \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] ### Step 2: Substitute the given value We are given that \( x^2 + \frac{1}{x^2} = 7 \). Substituting this into our equation gives: \[ 7 = \left( x + \frac{1}{x} \right)^2 - 2 \] ### Step 3: Solve for \( \left( x + \frac{1}{x} \right)^2 \) Adding 2 to both sides, we have: \[ 7 + 2 = \left( x + \frac{1}{x} \right)^2 \] \[ 9 = \left( x + \frac{1}{x} \right)^2 \] ### Step 4: Take the square root Taking the square root of both sides gives: \[ x + \frac{1}{x} = \pm 3 \] ### Final Answer Thus, the values of \( x + \frac{1}{x} \) are: \[ x + \frac{1}{x} = 3 \quad \text{or} \quad x + \frac{1}{x} = -3 \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If x^(2) +(1)/(x^(2)) = 7. find the values of , 3x^(2) - (3)/(x^(2))

If x^(2) + (1)/(x^(2))= 7 and x ne 0 , find the value of : 7x^(3) + 8x- (7)/(x^(3))- (8)/(x)

If x- (1)/ (x ) = 4 , find the value of : x^(2) + (1)/( x^(2))

If x^2+1/(x^2)=27 , find the values of each of the: x+1/x

If x^2+1/(x^2)=27 , find the values of each of the: x-1/x

Find the value of ∫1/ 2x − 2/ x + 3/ √x dx'

Find the value of (x+7)/2-(x+1)/3=(x+1)/2

If x^2+1/(x^2)=7 , find the value of x^3+1/(x^3)

If x^2+1/(x^2)=18 , find the values of x+1/x and x-1/xdot

If x =1 -sqrt(2) find the value of (x-(1)/(x))^(3)