Home
Class 9
MATHS
If a+ b = 7 and ab= 6, find a^(2) - ...

If ` a+ b = 7 and ab= 6, ` find ` a^(2) - b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a + b = 7 \) and \( ab = 6 \), and we need to find \( a^2 - b^2 \), we can follow these steps: ### Step 1: Use the identity for \( a^2 - b^2 \) We know that: \[ a^2 - b^2 = (a + b)(a - b) \] From the problem, we already have \( a + b = 7 \). ### Step 2: Find \( a - b \) To find \( a - b \), we can use the equations we have. We know: \[ ab = 6 \] We can express \( b \) in terms of \( a \): \[ b = 7 - a \] Substituting this into the equation \( ab = 6 \): \[ a(7 - a) = 6 \] This simplifies to: \[ 7a - a^2 = 6 \] Rearranging gives us: \[ a^2 - 7a + 6 = 0 \] ### Step 3: Factor the quadratic equation Next, we factor the quadratic equation: \[ a^2 - 7a + 6 = (a - 1)(a - 6) = 0 \] Setting each factor to zero gives us: \[ a - 1 = 0 \quad \text{or} \quad a - 6 = 0 \] Thus, we find: \[ a = 1 \quad \text{or} \quad a = 6 \] ### Step 4: Find corresponding values of \( b \) Using \( b = 7 - a \): - If \( a = 1 \), then \( b = 7 - 1 = 6 \). - If \( a = 6 \), then \( b = 7 - 6 = 1 \). ### Step 5: Calculate \( a^2 - b^2 \) Now we can calculate \( a^2 - b^2 \): Using \( a = 1 \) and \( b = 6 \): \[ a^2 - b^2 = 1^2 - 6^2 = 1 - 36 = -35 \] Using \( a = 6 \) and \( b = 1 \): \[ a^2 - b^2 = 6^2 - 1^2 = 36 - 1 = 35 \] ### Conclusion Thus, the value of \( a^2 - b^2 \) is \( 35 \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

If a^(2) +b^(2) = 13 and ab= 6 find: a^(2) - b^(2)

If a+b = 5 and ab = 6 , find a^2 + b^2

If a+ b =1 and a-b =7, find : a^(2) +b^(2)

If a +b= 7 and ab= 10 , find a-b

If a-b= 0.9 and ab= 0.36 find: a^(2) -b^(2)

If a+ b = 6 and ab = 8 , find : a^(3) + b^(3) .

If a+ b =1 and a-b =7, find : ab

If a-b= 7 and ab= 18 , find a +b

If a-b= 4 and a+b= 6 , find: ab