Home
Class 9
MATHS
If a^(2) +b^(2) = 13 and ab= 6 find: ...

If ` a^(2) +b^(2) = 13` and ab= 6 find:
` a^(2) - b^(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 - b^2 \) given that \( a^2 + b^2 = 13 \) and \( ab = 6 \). ### Step-by-Step Solution: 1. **Use the identity for \( a^2 - b^2 \)**: \[ a^2 - b^2 = (a - b)(a + b) \] We need to find \( a - b \) and \( a + b \). 2. **Find \( a - b \)**: We can use the identity: \[ (a - b)^2 = a^2 + b^2 - 2ab \] Substitute the known values: \[ (a - b)^2 = 13 - 2 \times 6 \] \[ (a - b)^2 = 13 - 12 = 1 \] Taking the square root: \[ a - b = \pm 1 \] 3. **Find \( a + b \)**: We can use the identity: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Substitute the known values: \[ (a + b)^2 = 13 + 2 \times 6 \] \[ (a + b)^2 = 13 + 12 = 25 \] Taking the square root: \[ a + b = \pm 5 \] 4. **Combine the results**: Now we have two cases for \( a - b \) and \( a + b \): - Case 1: \( a - b = 1 \) and \( a + b = 5 \) - Case 2: \( a - b = -1 \) and \( a + b = -5 \) 5. **Calculate \( a^2 - b^2 \)**: Using \( a^2 - b^2 = (a - b)(a + b) \): - For Case 1: \[ a^2 - b^2 = 1 \times 5 = 5 \] - For Case 2: \[ a^2 - b^2 = -1 \times -5 = 5 \] Thus, in both cases, we find that: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If a^(2) +b^(2) = 13 and ab= 6 find: a-b

If a^(2) +b^(2) = 13 and ab= 6 find: a+b

If a^(2) +b^(2) = 13 and ab= 6 find: 3(a+b) ^(2) - 2(a-b)^(2)

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

If a^(2) + b^(2) = 10 and ab = 3 , find : (i) a-b

If a^(2) + b^(2) = 41 and ab = 4 , find : (i) a-b

If a-b= 4 and a+b= 6 , find: a^(2) + b^(2)

If a-b= 0.9 and ab= 0.36 find: a^(2) -b^(2)

If a^(2) + b^(2) = 41 and ab = 4 , find : (ii) a+b

If a^(2) + b^(2) = 10 and ab = 3 , find : (ii) a+b