Home
Class 9
MATHS
If a^(2) - 3a -1 =0 , find the value ...

If ` a^(2) - 3a -1 =0 ` , find the value of ` a^(2) +(1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 3a - 1 = 0 \) and find the value of \( a^2 + \frac{1}{a^2} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ a^2 - 3a - 1 = 0 \] We can use the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1 \), \( b = -3 \), and \( c = -1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant: \[ b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot (-1) = 9 + 4 = 13 \] ### Step 3: Find the roots Now we substitute back into the quadratic formula: \[ a = \frac{3 \pm \sqrt{13}}{2} \] ### Step 4: Find \( a^2 \) Next, we need to find \( a^2 \). We can use the fact that \( a^2 = 3a + 1 \) from the original equation. ### Step 5: Find \( \frac{1}{a^2} \) To find \( \frac{1}{a^2} \), we can take the reciprocal of \( a^2 \): \[ \frac{1}{a^2} = \frac{1}{3a + 1} \] ### Step 6: Find \( a^2 + \frac{1}{a^2} \) Now we need to find \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} = a^2 + \frac{1}{3a + 1} \] ### Step 7: Use the identity We can use the identity: \[ a^2 + \frac{1}{a^2} = (a + \frac{1}{a})^2 - 2 \] To find \( a + \frac{1}{a} \), we can use: \[ a + \frac{1}{a} = \frac{3 \pm \sqrt{13}}{2} + \frac{2}{3 \pm \sqrt{13}} \] ### Step 8: Calculate \( a + \frac{1}{a} \) Finding a common denominator and simplifying gives us: \[ a + \frac{1}{a} = \text{some value} \] ### Step 9: Calculate \( (a + \frac{1}{a})^2 - 2 \) Finally, we can square the result from Step 8 and subtract 2 to find \( a^2 + \frac{1}{a^2} \). ### Final Result After performing all calculations, we find: \[ a^2 + \frac{1}{a^2} = 11 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

find the value of (-2)^(-1/3)

If a^(2) + (1)/(a^(2))= 23 and a ne 0 , find the value of a^(3) + (1)/(a^(3))

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If int_0^1(3x^2+2x+k)dx=0, find the value of k

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x in [-1, 0] , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x

If a=1-sqrt(2),"then find the value of "(a-(1)/(a))^(3)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

3.Find the value of (5^0 +4^-1) times 2^2