Home
Class 9
MATHS
If x = (1)/(x- 5) , find: x- (1)/(...

If x `= (1)/(x- 5) , ` find:
` x- (1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \frac{1}{x - 5} \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x = \frac{1}{x - 5} \] 2. **Cross-multiply to eliminate the fraction:** \[ x(x - 5) = 1 \] This simplifies to: \[ x^2 - 5x = 1 \] 3. **Rearrange the equation to set it to zero:** \[ x^2 - 5x - 1 = 0 \] 4. **Now, we will use the quadratic formula to solve for \( x \):** The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -5 \), and \( c = -1 \). 5. **Calculate the discriminant:** \[ b^2 - 4ac = (-5)^2 - 4 \cdot 1 \cdot (-1) = 25 + 4 = 29 \] 6. **Substituting the values into the quadratic formula:** \[ x = \frac{-(-5) \pm \sqrt{29}}{2 \cdot 1} = \frac{5 \pm \sqrt{29}}{2} \] 7. **Now we need to find \( x - \frac{1}{x} \):** First, we find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{2}{5 \pm \sqrt{29}} \] 8. **To simplify \( x - \frac{1}{x} \):** \[ x - \frac{1}{x} = \frac{5 \pm \sqrt{29}}{2} - \frac{2}{5 \pm \sqrt{29}} \] 9. **Finding a common denominator:** The common denominator is \( 2(5 \pm \sqrt{29}) \): \[ x - \frac{1}{x} = \frac{(5 \pm \sqrt{29})^2 - 4}{2(5 \pm \sqrt{29})} \] 10. **Calculating the numerator:** \[ (5 \pm \sqrt{29})^2 - 4 = 25 + 29 \pm 10\sqrt{29} - 4 = 50 \pm 10\sqrt{29} \] 11. **Thus, we have:** \[ x - \frac{1}{x} = \frac{50 \pm 10\sqrt{29}}{2(5 \pm \sqrt{29})} \] 12. **Final simplification gives us:** \[ x - \frac{1}{x} = 5 \pm \sqrt{29} \] ### Conclusion: The value of \( x - \frac{1}{x} \) can be expressed as \( 5 \pm \sqrt{29} \).
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If x = (1)/(x- 5) , find: x^(2)- (1)/(x^(2))

If x = (1)/(x- 5) , find: x^(2) + (1)/(x^(2))

If 2(x^(2) + 1)= 5x , find x- (1)/(x)

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

If 3x - (1)/(3x ) =5 , find : (ii) 81x^4 + (1)/( 81x^4)

If 2(x^(2) + 1)= 5x , find x^(3)- (1)/(x^(3))

If 2(x^(2)+1)=5x , find : (i) x-(1)/(x) (ii) x^(3)-(1)/(x^(3))

If x= (1)/(5-x) and x ne 5 , find x^(3) + (1)/(x^(3))

If x-1/x=5 , find the value of x^3-1/(x^3)