Home
Class 9
MATHS
If x = (1)/(x- 5) , find: x^(2) + ...

If x `= (1)/(x- 5) , ` find:
` x^(2) + (1)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = \frac{1}{x - 5} \) and find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x = \frac{1}{x - 5} \] ### Step 2: Square both sides To eliminate the fraction, we square both sides: \[ x^2 = \left(\frac{1}{x - 5}\right)^2 \] This simplifies to: \[ x^2 = \frac{1}{(x - 5)^2} \] ### Step 3: Rewrite the equation We can rewrite the equation as: \[ x^2 (x - 5)^2 = 1 \] ### Step 4: Expand the left side Expanding the left side gives: \[ x^2 (x^2 - 10x + 25) = 1 \] This simplifies to: \[ x^4 - 10x^3 + 25x^2 - 1 = 0 \] ### Step 5: Find \( \frac{1}{x^2} \) From \( x^2 = \frac{1}{(x - 5)^2} \), we can find \( \frac{1}{x^2} \): \[ \frac{1}{x^2} = (x - 5)^2 \] Expanding this gives: \[ \frac{1}{x^2} = x^2 - 10x + 25 \] ### Step 6: Add \( x^2 + \frac{1}{x^2} \) Now we can find \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = x^2 + (x^2 - 10x + 25) \] This simplifies to: \[ x^2 + \frac{1}{x^2} = 2x^2 - 10x + 25 \] ### Step 7: Substitute \( x^2 \) We already have \( x^2 = \frac{1}{(x - 5)^2} \). Substitute this into the equation: \[ x^2 + \frac{1}{x^2} = 2\left(\frac{1}{(x - 5)^2}\right) - 10x + 25 \] ### Final Result Thus, the expression \( x^2 + \frac{1}{x^2} \) can be evaluated based on the value of \( x \) derived from the original equation.
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))

If 3x - (1)/(3x ) =5 , find : (i) 9x^(2) + (1)/( 9x^2)

If 2(x^(2) + 1)= 5x , find x^(3)- (1)/(x^(3))

If x+1/x=sqrt(5) , find the values of x^2+1/(x^2) and x^4+1/(x^4)

If 2(x^(2)+1)=5x , find : (i) x-(1)/(x) (ii) x^(3)-(1)/(x^(3))

If x+1/x=6, find : x^2+\ 1//x^2

(i) If y= (x-1)/( 2x^(2) - 7x +5) , find (dy)/( dx) at x=2 .

If x = sqrt((n-1)/(n+1)) , find the value of (x/(x-1))^2+(x/(x+1))^2

If 2(x^(2) + 1)= 5x , find x- (1)/(x)

Find Lt_(xto1)(2x-1)/(3x^(2)-4x+5)