Home
Class 9
MATHS
If x- y = 7 and x^(3) - y^(3) = 133. ...

If x- y = 7 and ` x^(3) - y^(3) = 133. ` find :
`x^(2) + y^(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( x - y = 7 \) 2. \( x^3 - y^3 = 133 \) We need to find \( x^2 + y^2 \). ### Step 1: Use the identity for the difference of cubes We know that: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] Substituting the value of \( x - y \): \[ 133 = 7(x^2 + xy + y^2) \] ### Step 2: Solve for \( x^2 + xy + y^2 \) Now, we can isolate \( x^2 + xy + y^2 \): \[ x^2 + xy + y^2 = \frac{133}{7} = 19 \] ### Step 3: Use the identity for the square of a difference We also know that: \[ x^2 + y^2 = (x - y)^2 + 2xy \] Substituting \( x - y = 7 \): \[ x^2 + y^2 = 7^2 + 2xy = 49 + 2xy \] ### Step 4: Find \( xy \) From the previous step, we have: \[ x^2 + xy + y^2 = 19 \] We can express \( x^2 + y^2 \) in terms of \( xy \): \[ x^2 + y^2 = 19 - xy \] ### Step 5: Set up the equation Now we have two expressions for \( x^2 + y^2 \): 1. \( x^2 + y^2 = 49 + 2xy \) 2. \( x^2 + y^2 = 19 - xy \) Setting these equal to each other: \[ 49 + 2xy = 19 - xy \] ### Step 6: Solve for \( xy \) Rearranging gives: \[ 49 + 3xy = 19 \] \[ 3xy = 19 - 49 \] \[ 3xy = -30 \] \[ xy = -10 \] ### Step 7: Substitute \( xy \) back to find \( x^2 + y^2 \) Now substitute \( xy = -10 \) back into the equation for \( x^2 + y^2 \): \[ x^2 + y^2 = 49 + 2(-10) \] \[ x^2 + y^2 = 49 - 20 \] \[ x^2 + y^2 = 29 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{29} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Compound Interest|24 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If x- y = 7 and x^(3) - y^(3) = 133. find : xy

If x: y = 4:7, find 2x + 5y: 3x + 4y.

If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8) , find : (i) (x)/(y) (ii) (x^(3) + y^(3))/(x^(3) - y^(3))

If (3x -4y) : (2x -3y) = (5x -6y) : (4x -5y) , find : x : y .

Solve : 4x + (6)/(y ) = 15 and 3x - (4)/(y) = 7 . Hence, find 'a' if y = ax -2.

If 3x-2y=11 and x y=12 , find the value of 27\ x^3-8y^3

If 3x-7y=10\ and x y=-1, find the value of 9x^2+49 y^2

If 2x+3y=13 and x y=6 , find the value of 8x^3+27 y^3

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If 2^(x) = 4 xx 2^(y) and 9 xx 3^(x) = 3^(-y) , find the values of x and y.