Home
Class 9
MATHS
Factorise : a^(2) - b^(2) - c^(2) ...

Factorise :
` a^(2) - b^(2) - c^(2) +2bc `

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a^2 - b^2 - c^2 + 2bc \), we can follow these steps: ### Step 1: Rearrange the expression We start with the expression: \[ a^2 - b^2 - c^2 + 2bc \] We can rearrange it as: \[ a^2 - (b^2 - 2bc + c^2) \] ### Step 2: Recognize a perfect square Notice that \( b^2 - 2bc + c^2 \) can be factored as a perfect square: \[ b^2 - 2bc + c^2 = (b - c)^2 \] So, we can rewrite our expression as: \[ a^2 - (b - c)^2 \] ### Step 3: Apply the difference of squares formula Now we can apply the difference of squares formula, which states that \( x^2 - y^2 = (x + y)(x - y) \). Here, let \( x = a \) and \( y = (b - c) \): \[ a^2 - (b - c)^2 = (a + (b - c))(a - (b - c)) \] ### Step 4: Simplify the factors Now we simplify the factors: \[ = (a + b - c)(a - b + c) \] ### Final Result Thus, the factorised form of the expression \( a^2 - b^2 - c^2 + 2bc \) is: \[ (a + b - c)(a - b + c) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) - b^(2) - 2b -1

Factorise: a^(2) - b^(2) - 4ac + 4c^(2)

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : (ii) 54 a^(2) b^(2) - 6

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd

Factorise : b^(2) + c^(2) + 2bc - a^(2)

Factorise : 4a^(2) - (4b^(2) + 4bc + c^(2))

Factorise: 25a^(2) - 9b^(2) + 12bc - 4c^(2)