Home
Class 9
MATHS
Factorise : x^(2) - (8)/(x)...

Factorise :
` x^(2) - (8)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - \frac{8}{x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^2 - \frac{8}{x} \] To combine the terms, we can take a common denominator. The common denominator here is \( x \). ### Step 2: Take the LCM We rewrite the expression with the common denominator: \[ x^2 - \frac{8}{x} = \frac{x^3}{x} - \frac{8}{x} = \frac{x^3 - 8}{x} \] ### Step 3: Recognize the difference of cubes Now we have: \[ \frac{x^3 - 8}{x} \] We can see that \( 8 \) is \( 2^3 \), so we can rewrite it as: \[ x^3 - 2^3 \] This is a difference of cubes, which can be factored using the formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] where \( a = x \) and \( b = 2 \). ### Step 4: Apply the difference of cubes formula Using the formula, we factor \( x^3 - 2^3 \): \[ x^3 - 2^3 = (x - 2)(x^2 + 2x + 4) \] ### Step 5: Write the final factorized form Now, substituting back into our expression, we have: \[ \frac{(x - 2)(x^2 + 2x + 4)}{x} \] Thus, the factorized form of the original expression \( x^2 - \frac{8}{x} \) is: \[ \frac{(x - 2)(x^2 + 2x + 4)}{x} \] ### Summary The final answer is: \[ \frac{(x - 2)(x^2 + 2x + 4)}{x} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) - 25

Factorise : x^(2) - x - 72

Factorise : x^(2) + 5x - 6

Factorise : x^(2) - 5x -6

Factorise : x^(2) + 5x + 6

Factorise : x^(2) - 5x + 6

Factorise : 16 x^(2) - 8x - 3

Factorise : x^(2) + (1)/(x^(2)) - 3

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : 4x^(2) + (1)/(4x^(2)) + 1