Home
Class 9
MATHS
Factorise : a- 3b +a^(3) - 27b^(3)...

Factorise :
` a- 3b +a^(3) - 27b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( a - 3b + a^3 - 27b^3 \), we can follow these steps: ### Step 1: Rearrange the expression We start by rearranging the expression to group the terms related to cubes together: \[ a + a^3 - 3b - 27b^3 \] ### Step 2: Recognize the difference of cubes Notice that \( a^3 - 27b^3 \) can be recognized as a difference of cubes. We can rewrite \( 27b^3 \) as \( (3b)^3 \): \[ a^3 - (3b)^3 \] ### Step 3: Apply the difference of cubes formula The difference of cubes can be factored using the identity: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] Here, let \( x = a \) and \( y = 3b \). Thus, we can apply the formula: \[ a^3 - (3b)^3 = (a - 3b)(a^2 + a(3b) + (3b)^2) \] ### Step 4: Simplify the second factor Now, simplify the second factor: \[ a^2 + 3ab + 9b^2 \] ### Step 5: Combine the factored terms Now, we can combine the factored terms: \[ a - 3b + (a - 3b)(a^2 + 3ab + 9b^2) \] This can be rewritten as: \[ (a - 3b)(1 + a^2 + 3ab + 9b^2) \] ### Final Result Thus, the fully factored form of the expression \( a - 3b + a^3 - 27b^3 \) is: \[ (a - 3b)(1 + a^2 + 3ab + 9b^2) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 6 + 7b - 3b^(2)

Factorise : a-b - a^(3) + b^(3)

Factorise : 64 - a^(3)b^(3)

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : a^(6) - 26a^(3) - 27

Factorise : 8a^(3) - 27b^(3)

Factorise : a+2 b + a^(3) + 8b^(3)

Factorise : 4a^(2)b - 9b^(3)

Factorise : a^(3) + 27b^(3)

Factorise : a^(3) -(27/a^(3))