Home
Class 9
MATHS
Factorise : a^(2) + bc- ac - b^(2)...

Factorise :
` a^(2) + bc- ac - b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^2 + bc - ac - b^2 \), we can follow these steps: ### Step 1: Rearrange the expression We start by rearranging the terms in the expression: \[ a^2 - b^2 + bc - ac \] ### Step 2: Group the terms Next, we group the terms into two pairs: \[ (a^2 - b^2) + (bc - ac) \] ### Step 3: Factor out the common factors Now, we can factor each group: 1. The first group \( a^2 - b^2 \) is a difference of squares, which can be factored as: \[ (a - b)(a + b) \] 2. In the second group \( bc - ac \), we can factor out \( c \): \[ c(b - a) \] So, we rewrite the expression as: \[ (a - b)(a + b) + c(b - a) \] ### Step 4: Factor out the common binomial Notice that \( (b - a) \) can be rewritten as \( -(a - b) \). Thus, we can factor out \( (a - b) \): \[ (a - b)(a + b - c) \] ### Final Factored Form The final factored form of the expression \( a^2 + bc - ac - b^2 \) is: \[ (a - b)(a + b - c) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise a^(2) + b- ab - a

Factorise : 6a^(2) - 3a^(2) b - bc^(2) + 2c^(2)

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : b^(2) + c^(2) + 2bc - a^(2)

Factorise: a^(2) - b^(2) - 4ac + 4c^(2)

Factorise 98 ( a+b)^(2) - 2

Factorise : a^2 - ab - ca + bc

Factorise : a^(2) - b^(2) - 2b -1