Home
Class 9
MATHS
Factorise : 4a^(2) - 4ab+ b^(2) - 4...

Factorise :
` 4a^(2) - 4ab+ b^(2) - 4x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 4a^2 - 4ab + b^2 - 4x^2 \), we can follow these steps: ### Step 1: Group the terms We start with the expression: \[ 4a^2 - 4ab + b^2 - 4x^2 \] We can rearrange it to: \[ (4a^2 - 4ab + b^2) - 4x^2 \] ### Step 2: Recognize a perfect square The first part \( 4a^2 - 4ab + b^2 \) can be recognized as a perfect square trinomial. We can rewrite it as: \[ (2a - b)^2 \] Thus, we have: \[ (2a - b)^2 - 4x^2 \] ### Step 3: Apply the difference of squares formula Now, we have a difference of squares: \[ (2a - b)^2 - (2x)^2 \] We can apply the difference of squares formula, which states that \( A^2 - B^2 = (A + B)(A - B) \). Here, \( A = (2a - b) \) and \( B = 2x \). ### Step 4: Factor using the difference of squares Using the formula, we can factor the expression as follows: \[ (2a - b + 2x)(2a - b - 2x) \] ### Final Result Thus, the factorized form of the expression \( 4a^2 - 4ab + b^2 - 4x^2 \) is: \[ (2a - b + 2x)(2a - b - 2x) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(2) + 4a + 4 -b^(2)

Factorise : 4a^(2) - 49b^(2) + 2a - 7b

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : 4a^(2) - 12a + 9 - 49b^(2)

Factorise : 4a^(2)b - 9b^(3)

Factorise : 4x^(2) + 3x - 10

Factorise : 3x^(2) - 11x - 4

Factorise : 9a^(2) - (a^(2) - 4)^(2)

Factorise : 4a^(2) - (4b^(2) + 4bc + c^(2))

Factorise : 4x^(2) - 12ax - y^(2) - z^(2) - 2yz + 9a^(2)