Home
Class 9
MATHS
Factorise : (2a-3)^(2) - 2(2a-3) (a...

Factorise :
` (2a-3)^(2) - 2(2a-3) (a-1) +(a-1)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (2a-3)^{2} - 2(2a-3)(a-1) + (a-1)^{2} \), we can follow these steps: ### Step 1: Identify the structure of the expression The expression resembles the form of a perfect square trinomial, which is given by: \[ x^2 - 2xy + y^2 = (x - y)^2 \] In our case, we can let: - \( x = (2a - 3) \) - \( y = (a - 1) \) ### Step 2: Rewrite the expression using \( x \) and \( y \) Substituting \( x \) and \( y \) into the expression, we have: \[ (2a - 3)^{2} - 2(2a - 3)(a - 1) + (a - 1)^{2} \] This can be rewritten as: \[ x^{2} - 2xy + y^{2} \] ### Step 3: Factor the expression Using the identity for a perfect square trinomial, we can factor the expression as: \[ (x - y)^{2} \] Substituting back \( x \) and \( y \): \[ (2a - 3 - (a - 1))^{2} \] ### Step 4: Simplify the expression inside the parentheses Now, simplify \( 2a - 3 - (a - 1) \): \[ 2a - 3 - a + 1 = 2a - a - 3 + 1 = a - 2 \] ### Step 5: Write the final factored form Thus, the entire expression can be factored as: \[ (a - 2)^{2} \] ### Final Answer The factorized form of the expression is: \[ (a - 2)^{2} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 1 - 25 (a+b)^2

Factorise : 1-2a - 3a^(2)

Factorise : a^(3) + 2a^(2) - a-2

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : (i) 1-4 (a-2b)^2

Factorise : 5 + 3a - 14a^(2)

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : a(3a - 2)-1

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : a^(2) - b^(2) - 2b -1