Home
Class 9
MATHS
Factorise : (a+ b) ^(2) - 5( a^(2) - ...

Factorise :
` (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (a + b)^2 - 5(a^2 - b^2) - 24(a - b)^2 \), we will follow these steps: ### Step 1: Expand the terms Start by expanding each part of the expression using the identities: - \( (a + b)^2 = a^2 + b^2 + 2ab \) - \( a^2 - b^2 = (a + b)(a - b) \) - \( (a - b)^2 = a^2 - 2ab + b^2 \) So, we rewrite the expression: \[ (a + b)^2 - 5(a^2 - b^2) - 24(a - b)^2 \] Substituting the identities: \[ = (a^2 + b^2 + 2ab) - 5(a^2 - b^2) - 24(a^2 - 2ab + b^2) \] ### Step 2: Substitute and simplify Substituting the identities into the expression: \[ = a^2 + b^2 + 2ab - 5(a^2 - b^2) - 24(a^2 - 2ab + b^2) \] Expanding the terms: \[ = a^2 + b^2 + 2ab - 5a^2 + 5b^2 - 24a^2 + 48ab - 24b^2 \] ### Step 3: Combine like terms Now, combine the like terms: - For \( a^2 \): \( 1 - 5 - 24 = -28a^2 \) - For \( b^2 \): \( 1 + 5 - 24 = -18b^2 \) - For \( ab \): \( 2 + 48 = 50ab \) Putting it all together, we have: \[ -28a^2 - 18b^2 + 50ab \] ### Step 4: Factor out common terms Now, we can factor out a common factor of -2: \[ = -2(14a^2 + 9b^2 - 25ab) \] ### Step 5: Factor the quadratic expression Next, we need to factor the quadratic \( 14a^2 - 25ab + 9b^2 \). We look for two numbers that multiply to \( 14 \times 9 = 126 \) and add to \( -25 \). The numbers are \( -18 \) and \( -7 \). Rewriting the quadratic: \[ = -2(14a^2 - 18ab - 7ab + 9b^2) \] Grouping the terms: \[ = -2[(14a^2 - 18ab) + (-7ab + 9b^2)] \] Factoring by grouping: \[ = -2[2a(7a - 9b) - b(7a - 9b)] \] Factoring out \( (7a - 9b) \): \[ = -2(7a - 9b)(2a - b) \] ### Final Answer Thus, the factorised form of the expression is: \[ -2(7a - 9b)(2a - b) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 25(2a - b)^(2) - 81 b^(2)

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (a + 2b)^2 - a^2

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : 6 + 7b - 3b^(2)

Factorise : 1 - 25 (a+b)^2

Factorise : (2a + b)^(2) + 5 (2a + b) + 6

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)

Factorise : (5a - 2b)^2 - (2a - b)^2