Home
Class 9
MATHS
Factorise : ( a^(2) + 1) b^(2) - b^(4...

Factorise :
` ( a^(2) + 1) b^(2) - b^(4) - a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (a^2 + 1)b^2 - b^4 - a^2 \), we will follow these steps: ### Step 1: Expand the expression Start by distributing \( b^2 \) into the first part of the expression: \[ (a^2 + 1)b^2 - b^4 - a^2 = a^2b^2 + b^2 - b^4 - a^2 \] ### Step 2: Rearrange the terms Now, rearranging the terms gives: \[ a^2b^2 - a^2 + b^2 - b^4 \] ### Step 3: Group the terms Next, group the terms involving \( a^2 \) and the remaining terms: \[ a^2(b^2 - 1) + b^2 - b^4 \] ### Step 4: Factor out common terms Notice that \( b^2 - b^4 \) can be factored: \[ b^2 - b^4 = b^2(1 - b^2) \] So, the expression now looks like: \[ a^2(b^2 - 1) + b^2(1 - b^2) \] ### Step 5: Factor out \( (b^2 - 1) \) Now, we can factor out \( (b^2 - 1) \): \[ (b^2 - 1)(a^2 - b^2) \] ### Step 6: Recognize the difference of squares The term \( a^2 - b^2 \) can be factored further using the difference of squares: \[ a^2 - b^2 = (a - b)(a + b) \] ### Step 7: Final factorization Thus, the complete factorization of the original expression is: \[ (b - 1)(b + 1)(a - b)(a + b) \] ### Final Answer The factors of the expression \( (a^2 + 1)b^2 - b^4 - a^2 \) are: \[ (b - 1)(b + 1)(a - b)(a + b) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(3) b - a^(2) b^(2) - b^(3)

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : a^(2) + 4a + 4 -b^(2)

Factorise : a^(2) - (2a + 3b)^(2)

Factorise : (i) a^(2) - (b-c)^(2)

Factorise : 7b^(2) - 8b +1

Factorise : (ii) 54 a^(2) b^(2) - 6

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : (iii) a^(2) - ab (1-b) - b^(3)

Factorise : a^(2) + bc- ac - b^(2)