Home
Class 9
MATHS
Factorise 3( 2x- y) ^(3) +9 ( 2x- y...

Factorise
` 3( 2x- y) ^(3) +9 ( 2x- y) ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 3(2x - y)^3 + 9(2x - y)^2 \), we can follow these steps: ### Step 1: Identify common factors Observe that both terms in the expression \( 3(2x - y)^3 \) and \( 9(2x - y)^2 \) have a common factor of \( (2x - y)^2 \). ### Step 2: Factor out the common factor We can factor out \( 3(2x - y)^2 \) from both terms: \[ 3(2x - y)^3 + 9(2x - y)^2 = 3(2x - y)^2 \left( (2x - y) + 3 \right) \] ### Step 3: Simplify the expression inside the parentheses Now, simplify the expression inside the parentheses: \[ (2x - y) + 3 = 2x - y + 3 \] ### Step 4: Write the final factored form Putting it all together, we have: \[ 3(2x - y)^2 (2x - y + 3) \] Thus, the factored form of the expression \( 3(2x - y)^3 + 9(2x - y)^2 \) is: \[ 3(2x - y)^2 (2x - y + 3) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : (x-y)^(3) - 8x^(3)

Factorise : 1 - (2x + 3y) - 6 (2x + 3y)^2

Factorise : 49 (x-y)^2 - 9 (2x +y)^2

Factorise (2x- y)^(2) - 14 x + 7 y - 18

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise 8( 3x - 2y ) ^(2) - 6x + 4y -1

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10

Factorise : 25 (2x + y)^2 - 16 (x-y)^2