Home
Class 9
MATHS
Factorise a^(2) + b- ab - a...

Factorise
` a^(2) + b- ab - a `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( a^2 + b - ab - a \), we will follow these steps: 1. **Rearrange the terms**: We can rearrange the expression to group similar terms together. \[ a^2 - ab - a + b \] 2. **Group the terms**: Now, we can group the first two terms and the last two terms: \[ (a^2 - ab) + (-a + b) \] 3. **Factor out common terms**: From the first group \( (a^2 - ab) \), we can factor out \( a \): \[ a(a - b) + (-1)(a - b) \] From the second group \( (-a + b) \), we can factor out \(-1\) to make it \( (b - a) \), which is equivalent to \(-(a - b)\). 4. **Factor out the common binomial**: Now we notice that both terms contain the common factor \( (a - b) \): \[ (a - b)(a - 1) \] Thus, the factorized form of the expression \( a^2 + b - ab - a \) is: \[ (a - b)(a - 1) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : (i) a^(2) - ab - 3a + 3b

Factorise : a^3 - a^2 - ab + a + b - 1

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise 98 ( a+b)^(2) - 2

Factorise : a^(2) + bc- ac - b^(2)

Factorise : 9a^(2) + 3a - 8b - 64b^(2)

Factorise : 4a^2 - 8ab

Factorise : a^2 + ax + ab + bx

Factorise : a^2 - ab - ca + bc

Factorise : a^(2) - b^(2) - 2b -1