Home
Class 9
MATHS
Factorise x^(2) + (1)/(x^(2)) + 2- 5x...

Factorise
` x^(2) + (1)/(x^(2)) + 2- 5x -( 5)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 + \frac{1}{x^2} + 2 - 5x - \frac{5}{x} \), we will follow these steps: ### Step 1: Rewrite the Expression Start by rewriting the expression for clarity: \[ x^2 + \frac{1}{x^2} + 2 - 5x - \frac{5}{x} \] ### Step 2: Combine Terms Notice that \( x^2 + \frac{1}{x^2} + 2 \) can be rewritten using the identity \( a^2 + b^2 + 2ab = (a + b)^2 \). Here, let \( a = x \) and \( b = \frac{1}{x} \): \[ x^2 + 2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 \] Thus, we can rewrite the expression as: \[ \left(x + \frac{1}{x}\right)^2 - 5x - \frac{5}{x} \] ### Step 3: Factor Out Common Terms Now, we can express \( -5x - \frac{5}{x} \) as: \[ -5\left(x + \frac{1}{x}\right) \] So, the expression becomes: \[ \left(x + \frac{1}{x}\right)^2 - 5\left(x + \frac{1}{x}\right) \] ### Step 4: Let \( y = x + \frac{1}{x} \) Let \( y = x + \frac{1}{x} \). Then, we can rewrite the expression as: \[ y^2 - 5y \] ### Step 5: Factor the Quadratic Expression Now, we can factor the quadratic expression: \[ y^2 - 5y = y(y - 5) \] ### Step 6: Substitute Back for \( y \) Substituting back \( y = x + \frac{1}{x} \): \[ (x + \frac{1}{x})(x + \frac{1}{x} - 5) \] ### Final Factorized Form Thus, the factorized form of the expression is: \[ (x + \frac{1}{x})(x + \frac{1}{x} - 5) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : x^(2) + (1)/(x^(2)) - 3

Factorise : x^(2) + (1)/(x^(2)) -11

Factorise : x^(2) - (8)/(x)

Factorise : 4x^(2) + (1)/(4x^(2)) + 1

Factorise : x^(2) + (1)/(4x^(2)) + 1 - 7x - (7)/(2x)

Factorise : x^(2) - 5x -6

Factorise : x^(2) + 5x + 6

Factorise : x^(2) - 5x + 6

Factorise : x^(2) + 5x - 6

Factorise : x^(2) - x - 72