Home
Class 9
MATHS
Factorise x(x-a) - y ( y-a)...

Factorise
` x(x-a) - y ( y-a) `

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x(x-a) - y(y-a) \), we will follow these steps: ### Step 1: Expand the expression Start by expanding both terms in the expression: \[ x(x-a) = x^2 - ax \] \[ y(y-a) = y^2 - ay \] Thus, the expression becomes: \[ x^2 - ax - (y^2 - ay) \] ### Step 2: Simplify the expression Now, simplify the expression by distributing the negative sign: \[ x^2 - ax - y^2 + ay \] Rearranging the terms gives us: \[ x^2 - y^2 - ax + ay \] ### Step 3: Group the terms Next, we can group the terms in a way that makes it easier to factor: \[ (x^2 - y^2) + (ay - ax) \] ### Step 4: Factor out common factors Now, we can factor out the common factors from each group: 1. The first group \( x^2 - y^2 \) is a difference of squares, which can be factored as: \[ (x - y)(x + y) \] 2. The second group \( ay - ax \) can be factored as: \[ a(y - x) \] Thus, we rewrite the expression as: \[ (x - y)(x + y) + a(y - x) \] ### Step 5: Factor out the common binomial Notice that \( y - x \) is the negative of \( x - y \). Therefore, we can rewrite \( a(y - x) \) as \( -a(x - y) \): \[ (x - y)(x + y) - a(x - y) \] Now, we can factor out \( (x - y) \): \[ (x - y)((x + y) - a) \] ### Final Answer Thus, the factorised form of the expression \( x(x-a) - y(y-a) \) is: \[ (x - y)(x + y - a) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 49 (x-y)^2 - 9 (2x +y)^2

Factorise x^(2) - 2y +xy -4

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise : (vi) x^(2) - y^(2) - 2yz - z^(2)

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : (ii) 2x (a+b) - 3y (a+b)

Factorise : 4 + y - 14y^(2)

Factorise 81 x ^(4) - 16y^(4)

Factorise : 2x^(2) + xy - 6y^(2)

Factorise : x^(2) + 5xy + 4y^(2)