Home
Class 9
MATHS
Factorise x^(2) - 2y +xy -4...

Factorise
` x^(2) - 2y +xy -4`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( x^2 - 2y + xy - 4 \), we can follow these steps: ### Step 1: Rearrange the terms We can rearrange the expression for convenience: \[ x^2 + xy - 2y - 4 \] ### Step 2: Group the terms Next, we can group the terms in pairs: \[ (x^2 + xy) + (-2y - 4) \] ### Step 3: Factor out common factors from each group From the first group \( (x^2 + xy) \), we can factor out \( x \): \[ x(x + y) \] From the second group \( (-2y - 4) \), we can factor out \(-2\): \[ -2(y + 2) \] So now we have: \[ x(x + y) - 2(y + 2) \] ### Step 4: Rearrange the expression Now we can rewrite the expression: \[ x(x + y) - 2(y + 2) \] ### Step 5: Factor by grouping Notice that \( (y + 2) \) can be factored out: \[ (x - 2)(x + y + 2) \] ### Final Answer Thus, the factorized form of the expression \( x^2 - 2y + xy - 4 \) is: \[ (x - 2)(x + y + 2) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : (iv) 5x^(2) - 4xy - 12y^(2)

Factorise : (v) x^(2) - 2xy + y^(2) - z^(2)

Factorise : -x^(2) y - x + 3xy + 3

Factorise : 6x^(2) y + 9xy^(2) + 4y^(3)

Factorise : x^(2) - 10 xy + 24y^(2)

Factorise : 4x^(2) - 12ax - y^(2) - z^(2) - 2yz + 9a^(2)

Factorise : 4x^2 - 81 y^2

Factorise : (ii) x^(2) y - xy^(2) + 5x - 5y

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise : x^(2) + 6x + 9 - 4y^(2)