Home
Class 9
MATHS
Factorise 2(ab + cd) - a^(2) - b^(2)...

Factorise
` 2(ab + cd) - a^(2) - b^(2) +c^(2) +d^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 2(ab + cd) - a^2 - b^2 + c^2 + d^2 \), we will follow these steps: ### Step 1: Rewrite the expression Start by expanding the expression: \[ 2(ab + cd) - a^2 - b^2 + c^2 + d^2 = 2ab + 2cd - a^2 - b^2 + c^2 + d^2 \] ### Step 2: Rearrange the terms Rearranging the terms, we can group them as follows: \[ (2cd + c^2 + d^2) - (a^2 + b^2 - 2ab) \] ### Step 3: Recognize the perfect square identities We can recognize that: - \( c^2 + d^2 + 2cd = (c + d)^2 \) - \( a^2 + b^2 - 2ab = (a - b)^2 \) So we can rewrite the expression as: \[ (c + d)^2 - (a - b)^2 \] ### Step 4: Apply the difference of squares formula Now we can use the difference of squares formula, which states that \( x^2 - y^2 = (x + y)(x - y) \): Let \( x = c + d \) and \( y = a - b \): \[ (c + d)^2 - (a - b)^2 = (c + d + (a - b))(c + d - (a - b)) \] ### Step 5: Simplify the factors Now, simplify the factors: \[ (c + d + a - b)(c + d - a + b) \] ### Final Answer Thus, the factorization of the expression \( 2(ab + cd) - a^2 - b^2 + c^2 + d^2 \) is: \[ (c + d + a - b)(c + d - a + b) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : ab (c^2 + d^2) - a^(2) cd - b^(2) cd

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise a^2 - 2ab + b^2 - c^2

Factorise : (a + 2b)^2 - a^2

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)

Factorise : 4a^(2) - 4ab+ b^(2) - 4x^(2)

Factorise : a^(3) + 3a^(2)b + 3ab^(2) + 2b^(3) .

Factorise : (iv) ax^(2) + b^(2) y - ab^(2) - x^(2) y

Factorise : a^(2) + b^(2) - c^(2) - d^(2) + 2ab - 2cd

Given four quantities a , b , c and d are in proportion. Show that : (a - c)b^(2) : (b - d)cd = (a^(2) - b^(2) - ab) : (c^(2) - d^(2) - cd)