Home
Class 9
MATHS
Factorise (1-a^(2))(1-b^(2)) + 4ab...

Factorise
` (1-a^(2))(1-b^(2)) + 4ab `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (1 - a^2)(1 - b^2) + 4ab \), we will follow these steps: ### Step 1: Expand the expression We start by expanding \( (1 - a^2)(1 - b^2) \). \[ (1 - a^2)(1 - b^2) = 1 \cdot 1 - 1 \cdot b^2 - a^2 \cdot 1 + a^2 \cdot b^2 = 1 - b^2 - a^2 + a^2b^2 \] Now, we add \( 4ab \) to this expression: \[ 1 - b^2 - a^2 + a^2b^2 + 4ab \] ### Step 2: Rearrange the terms Rearranging the terms gives us: \[ 1 + a^2b^2 - a^2 - b^2 + 4ab \] ### Step 3: Group the terms Next, we can group the terms related to \( a \) and \( b \): \[ 1 + (a^2b^2 - a^2 - b^2 + 4ab) \] ### Step 4: Factor the quadratic expression Now we can rewrite \( a^2b^2 - a^2 - b^2 + 4ab \) as: \[ a^2b^2 + 4ab - a^2 - b^2 \] We can factor this as: \[ (a^2 + 4ab + b^2) - (a^2 + b^2) \] ### Step 5: Recognize the perfect square Notice that \( a^2 + 4ab + b^2 \) can be rewritten as: \[ (a + 2b)^2 \] So we have: \[ 1 + (a + 2b)^2 - (a^2 + b^2) \] ### Step 6: Apply the difference of squares Now we can apply the difference of squares: \[ (1 + (ab)^2) - (a - b)^2 \] Using the identity \( x^2 - y^2 = (x + y)(x - y) \): Let \( x = (1 + ab) \) and \( y = (a - b) \): \[ (1 + ab + (a - b))(1 + ab - (a - b)) \] ### Final Result Thus, the factorized form of the expression \( (1 - a^2)(1 - b^2) + 4ab \) is: \[ (1 + ab + a - b)(1 + ab - a + b) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : (1-x^(2))(1-y^(2)) + 4xy

Factorise : (a^(2) -1)(b^(2) -1) + 4ab

Factorise : 1- 100a^2

Factorise : 1-2a - 3a^(2)

Factorise : 5a^(2) - b^(2) - 4ab + 7a - 7b

Factorise : a-b-4a^(2) + 4b^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : a^4 - (a^2 - 3b^2)^2

Factorise : a^(2) + (1)/(a^(2)) - 18

Factorise : ( a^(2) + 1) b^(2) - b^(4) - a^(2)