Home
Class 9
MATHS
Factorise (x^(2) +y^(2) -z^(2))^(2) ...

Factorise
` (x^(2) +y^(2) -z^(2))^(2) - 4x^(2) y^(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (x^2 + y^2 - z^2)^2 - 4x^2y^2 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (x^2 + y^2 - z^2)^2 - 4x^2y^2 \] Notice that \( 4x^2y^2 \) can be rewritten as \( (2xy)^2 \). Therefore, we can express the equation as: \[ (x^2 + y^2 - z^2)^2 - (2xy)^2 \] ### Step 2: Recognize the difference of squares The expression now resembles the difference of squares, which is given by the formula: \[ a^2 - b^2 = (a - b)(a + b) \] In our case, let: - \( a = x^2 + y^2 - z^2 \) - \( b = 2xy \) ### Step 3: Apply the difference of squares formula Now we can apply the difference of squares formula: \[ (x^2 + y^2 - z^2 - 2xy)(x^2 + y^2 - z^2 + 2xy) \] ### Step 4: Simplify the factors Now, we simplify each factor: 1. The first factor: \[ x^2 + y^2 - z^2 - 2xy = (x^2 - 2xy + y^2 - z^2) = (x - y)^2 - z^2 \] This can be further factored as: \[ ((x - y) - z)((x - y) + z) \] 2. The second factor: \[ x^2 + y^2 - z^2 + 2xy = (x^2 + 2xy + y^2 - z^2) = (x + y)^2 - z^2 \] This can also be factored as: \[ ((x + y) - z)((x + y) + z) \] ### Final Result Putting it all together, we have: \[ (x^2 + y^2 - z^2)^2 - 4x^2y^2 = ((x - y) - z)((x - y) + z)((x + y) - z)((x + y) + z) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : (x^(2) + 4y^(2) - 9z^(2))^(2) - 16x^(2)y^(2)

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise: x^(4) + y^(4) - 27x^(2)y^(2)

Factorise x^(2)-(y-z)^(2) .

Factorise : 9(x-y)^(2) - (x+2y)^(2)

Factorise : (v) x^(2) - 2xy + y^(2) - z^(2)

Factorise : 4x^2 - 81 y^2

Factorise : x^(2) + 5xy + 4y^(2)