Home
Class 9
MATHS
Factorise 8( 3x - 2y ) ^(2) - 6x + ...

Factorise
` 8( 3x - 2y ) ^(2) - 6x + 4y -1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 8(3x - 2y)^2 - 6x + 4y - 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 8(3x - 2y)^2 - 6x + 4y - 1 \] ### Step 2: Group the terms Notice that we can group the linear terms together: \[ 8(3x - 2y)^2 - (6x - 4y + 1) \] ### Step 3: Factor out the negative sign We can factor out a negative sign from the linear terms: \[ 8(3x - 2y)^2 - (6x - 4y + 1) = 8(3x - 2y)^2 - 1(6x - 4y + 1) \] ### Step 4: Substitute \( t \) Let \( t = 3x - 2y \). Then, we can rewrite the expression as: \[ 8t^2 - (6x - 4y + 1) \] ### Step 5: Rewrite the linear terms in terms of \( t \) We need to express \( 6x - 4y + 1 \) in terms of \( t \): \[ 6x - 4y = 2(3x - 2y) = 2t \] Thus, we can rewrite the expression as: \[ 8t^2 - (2t - 1) \] ### Step 6: Combine the terms Now we have: \[ 8t^2 - 2t + 1 \] ### Step 7: Factor the quadratic To factor \( 8t^2 - 2t + 1 \), we can look for two numbers that multiply to \( 8 \times 1 = 8 \) and add to \( -2 \). The factors are \( -4 \) and \( 2 \): \[ 8t^2 - 4t + 2t - 1 \] Now, we can group the terms: \[ (8t^2 - 4t) + (2t - 1) \] Factoring out common factors gives: \[ 4t(2t - 1) + 1(2t - 1) \] Now we can factor out \( (2t - 1) \): \[ (4t + 1)(2t - 1) \] ### Step 8: Substitute back \( t \) Now, substituting back \( t = 3x - 2y \): \[ (4(3x - 2y) + 1)(2(3x - 2y) - 1) \] This simplifies to: \[ (12x - 8y + 1)(6x - 4y - 1) \] ### Final Answer Thus, the factorized form of the expression is: \[ (12x - 8y + 1)(6x - 4y - 1) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : 12(3x - 2y)^(2) - (3x - 2y)-1

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : (i) 6x^(3) - 8x^(2)

Factorise : 4x(3x - 2y) - 2y (3x-2y)

Factorise x^(2) - 2y +xy -4

Factorise : 9x^(2) + 3x - 8y - 64y^(2)

Factorise : (i) y^3 - 3y^2 + 2y - 6 - xy + 3x

Factorise : x^(2) + 6x + 9 - 4y^(2)

Factorise : 1 - (2x + 3y) - 6 (2x + 3y)^2