Home
Class 9
MATHS
Factorise 27 -x^(3) y^(3) +6-2xy...

Factorise
` 27 -x^(3) y^(3) +6-2xy `

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 27 - x^3 y^3 + 6 - 2xy \), we can follow these steps: ### Step 1: Rearrange the expression First, let's rearrange the expression to group similar terms: \[ 27 + 6 - x^3 y^3 - 2xy \] This simplifies to: \[ 33 - x^3 y^3 - 2xy \] ### Step 2: Recognize the cubes Notice that \( 27 \) can be expressed as \( 3^3 \) and \( x^3 y^3 \) can be expressed as \( (xy)^3 \). Thus, we can rewrite the expression: \[ 3^3 - (xy)^3 + 33 - 2xy \] ### Step 3: Factor the difference of cubes The expression \( 3^3 - (xy)^3 \) can be factored using the difference of cubes formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, \( a = 3 \) and \( b = xy \). So we have: \[ (3 - xy)(3^2 + 3(xy) + (xy)^2) \] Calculating \( 3^2 + 3(xy) + (xy)^2 \): \[ = 9 + 3xy + x^2y^2 \] Thus, we can rewrite the expression as: \[ (3 - xy)(9 + 3xy + x^2y^2) \] ### Step 4: Combine with the remaining terms Now, we need to include the remaining \( +33 - 2xy \) into our factorization. We can rewrite \( 33 \) as \( 3 \times 11 \): \[ 33 - 2xy = 3 \times 11 - 2xy \] Now, we can factor out \( (3 - xy) \): \[ (3 - xy)(9 + 3xy + x^2y^2) + 2(3 - xy) \] ### Step 5: Factor out the common term Now we can factor out \( (3 - xy) \) from the entire expression: \[ (3 - xy)(9 + 3xy + x^2y^2 + 2) \] This simplifies to: \[ (3 - xy)(x^2y^2 + 3xy + 11) \] ### Final Answer Thus, the factorized form of the expression is: \[ (3 - xy)(x^2y^2 + 3xy + 11) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : a^(6) + 27b^(3)

Factorise : 3x^2 + 6x^3

Factorise : a^(3) + 27b^(3)

Factorise : (x-y)^(3) - 8x^(3)

Factorise : 15x^(4) y^(3) - 20x^(3) y

Factorise : (vii) x^(2) y^(2) - 3xy - 40

Factorise : a^(3) -(27/a^(3))

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : 48x^(3) - 27x

Factorise : a^(3) - 27