Home
Class 9
MATHS
Factorise (2x- y)^(2) - 14 x + 7 y ...

Factorise
` (2x- y)^(2) - 14 x + 7 y - 18 `

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( (2x - y)^2 - 14x + 7y - 18 \), we will follow these steps: ### Step 1: Rewrite the expression Start with the original expression: \[ (2x - y)^2 - 14x + 7y - 18 \] ### Step 2: Substitute for convenience Let \( t = 2x - y \). Then, we can rewrite the expression as: \[ t^2 - 14x + 7y - 18 \] ### Step 3: Express \( 14x \) and \( 7y \) in terms of \( t \) From the substitution \( t = 2x - y \), we can express \( y \) in terms of \( t \) and \( x \): \[ y = 2x - t \] Substituting this back into the expression gives: \[ t^2 - 14x + 7(2x - t) - 18 \] This simplifies to: \[ t^2 - 14x + 14x - 7t - 18 = t^2 - 7t - 18 \] ### Step 4: Factor the quadratic expression Now we need to factor \( t^2 - 7t - 18 \). We can do this by finding two numbers that multiply to \(-18\) and add to \(-7\). The numbers \(-9\) and \(2\) work: \[ t^2 - 9t + 2t - 18 = (t - 9)(t + 2) \] ### Step 5: Substitute back for \( t \) Now, substitute back \( t = 2x - y \): \[ (2x - y - 9)(2x - y + 2) \] ### Final Answer Thus, the factorised form of the expression \( (2x - y)^2 - 14x + 7y - 18 \) is: \[ (2x - y - 9)(2x - y + 2) \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise 1- ( 2x- 3y ) ^(2)

Factorise : 4 + y - 14y^(2)

Factorise x^(2)-(y-z)^(2) .

Factorise : (vi) 15 (2x - y)^(2) - 16 (2x -y) - 15

Factorise: 4(2x-3y)^(2) - 8x + 12y -3

Factorise : (iv) (2x - y)^(3) - (2x - y)

Factorise : (x-2y)^(2) - 12(x-2y) + 32

Factorise : 4(x+y)^(2) - 3(x+y)

Factorise x^(2)-6x-y^(2)+9 .

Factorise : (3x - 2y)^(2) + 3(3x - 2y) - 10