Home
Class 9
MATHS
Factorise 98 ( a+b)^(2) - 2...

Factorise
` 98 ( a+b)^(2) - 2`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( 98 (a + b)^2 - 2 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 98 (a + b)^2 - 2 \] ### Step 2: Divide by 2 To simplify the expression, we can divide the entire expression by 2: \[ \frac{98 (a + b)^2 - 2}{2} = 49 (a + b)^2 - 1 \] ### Step 3: Recognize the difference of squares Now we have: \[ 49 (a + b)^2 - 1 \] This expression is in the form of a difference of squares, which can be expressed as \( X^2 - Y^2 \) where \( X = 7(a + b) \) and \( Y = 1 \). ### Step 4: Apply the difference of squares formula Using the difference of squares formula \( X^2 - Y^2 = (X - Y)(X + Y) \), we can factor the expression: \[ (7(a + b) - 1)(7(a + b) + 1) \] ### Step 5: Write the final factorized form Thus, the factorized form of the original expression \( 98 (a + b)^2 - 2 \) is: \[ (7(a + b) - 1)(7(a + b) + 1) \] ### Summary The final factorized expression is: \[ (7(a + b) - 1)(7(a + b) + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 1 - 25 (a+b)^2

Factorise : 6 + 7b - 3b^(2)

Factorise : (a+b)^(2) - a^(2) + b^(2)

Factorise : a^(2) - b^(2) - 2b -1

Factorise : (a+ b) ^(2) - 5( a^(2) - b^(2) ) - 24 (a-b)^(2)

Factorise : (2a + b)^(2) + 5 (2a + b) + 6

Factorise : 25(2a - b)^(2) - 81 b^(2)

Factorise : (ix) 12 (a+b)^(2) - (a+b) - 35

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise : (5a - 3b)^2 - 16b^2