Home
Class 9
MATHS
Factorise 81 x ^(4) - 16y^(4)...

Factorise
` 81 x ^(4) - 16y^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( 81x^4 - 16y^4 \), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ 81x^4 - 16y^4 \] ### Step 2: Recognize it as a difference of squares Notice that both \( 81x^4 \) and \( 16y^4 \) are perfect squares: \[ 81x^4 = (9x^2)^2 \quad \text{and} \quad 16y^4 = (4y^2)^2 \] Thus, we can rewrite the expression as: \[ (9x^2)^2 - (4y^2)^2 \] ### Step 3: Apply the difference of squares formula We can use the difference of squares identity: \[ a^2 - b^2 = (a + b)(a - b) \] Here, let \( a = 9x^2 \) and \( b = 4y^2 \). Applying the formula gives us: \[ (9x^2 + 4y^2)(9x^2 - 4y^2) \] ### Step 4: Factor the second term further Now, we notice that \( 9x^2 - 4y^2 \) is also a difference of squares: \[ 9x^2 - 4y^2 = (3x)^2 - (2y)^2 \] Applying the difference of squares formula again: \[ (3x + 2y)(3x - 2y) \] ### Step 5: Combine all factors Now we can combine all the factors: \[ 81x^4 - 16y^4 = (9x^2 + 4y^2)(3x + 2y)(3x - 2y) \] ### Final Answer Thus, the complete factorization of \( 81x^4 - 16y^4 \) is: \[ (9x^2 + 4y^2)(3x + 2y)(3x - 2y) \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : 16x^(2) - y^(2) + 4yz - 4z^(2)

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : 4x^(4) + 9y^(4) + 11x^(2)y^(2)

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise : 16 x^(2) - 8x - 3

Factorise : 4x^2 - 81 y^2

Factorise : 16a^(4) + 54a

Factorise : 16-9x^2

Factorise : 3x^(2) - 11x - 4