Home
Class 9
MATHS
Factorise (2a+ b)^(3) - (a+ 2b)^(3)...

Factorise
` (2a+ b)^(3) - (a+ 2b)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \( (2a + b)^3 - (a + 2b)^3 \), we can use the identity for the difference of cubes, which states that: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] where \( x = 2a + b \) and \( y = a + 2b \). ### Step 1: Identify \( x \) and \( y \) Let: - \( x = 2a + b \) - \( y = a + 2b \) ### Step 2: Calculate \( x - y \) Now, we calculate \( x - y \): \[ x - y = (2a + b) - (a + 2b) = 2a + b - a - 2b = a - b \] ### Step 3: Calculate \( x^2 + xy + y^2 \) Next, we need to calculate \( x^2 + xy + y^2 \). 1. **Calculate \( x^2 \)**: \[ x^2 = (2a + b)^2 = 4a^2 + 4ab + b^2 \] 2. **Calculate \( y^2 \)**: \[ y^2 = (a + 2b)^2 = a^2 + 4ab + 4b^2 \] 3. **Calculate \( xy \)**: \[ xy = (2a + b)(a + 2b) = 2a^2 + 4ab + ab + 2b^2 = 2a^2 + 5ab + 2b^2 \] 4. **Combine \( x^2 + xy + y^2 \)**: \[ x^2 + xy + y^2 = (4a^2 + 4ab + b^2) + (2a^2 + 5ab + 2b^2) + (a^2 + 4ab + 4b^2) \] Combine like terms: \[ = (4a^2 + 2a^2 + a^2) + (4ab + 5ab + 4ab) + (b^2 + 2b^2 + 4b^2) \] \[ = 7a^2 + 13ab + 7b^2 \] ### Step 4: Write the final factorization Now we can write the factorization of the original expression: \[ (2a + b)^3 - (a + 2b)^3 = (a - b)(7a^2 + 13ab + 7b^2) \] ### Final Answer Thus, the factorization of \( (2a + b)^3 - (a + 2b)^3 \) is: \[ \boxed{(a - b)(7a^2 + 13ab + 7b^2)} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Simultaneous Equations|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Expansions |20 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Factorise : (a+b)^(3) -a-b

Factorise : 4 (2a + b)^2 - (a-b)^2

Factorise : (5a - 2b)^2 - (2a - b)^2

Factorise : (2a + b)^(2) - 6a - 3b - 4

Factorise 98 ( a+b)^(2) - 2

Factorise : a^(2) - b^(2) - (a+b)^(2)

Factorise : (2a + b)^(2) + 5 (2a + b) + 6

Factorise : 25(2a - b)^(2) - 81 b^(2)

Factorise : a b^(2) - (a-1) b-1 .

Factorise : 4a^(2)b - 9b^(3)