Home
Class 9
MATHS
Find the value of : log 2 ,0.125...

Find the value of :
` log _ 2 ,0.125`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_2(0.125) \), we can follow these steps: ### Step 1: Rewrite 0.125 as a fraction 0.125 can be expressed as a fraction. Since there are three decimal places, we can write: \[ 0.125 = \frac{125}{1000} \] ### Step 2: Simplify the fraction Next, we can simplify \( \frac{125}{1000} \): \[ \frac{125}{1000} = \frac{1}{8} \] ### Step 3: Express 1/8 as a power of 2 Now, we can express \( \frac{1}{8} \) as a power of 2. Since \( 8 = 2^3 \), we have: \[ \frac{1}{8} = \frac{1}{2^3} = 2^{-3} \] ### Step 4: Substitute back into the logarithm Now we can substitute \( 0.125 \) with \( 2^{-3} \) in the logarithm: \[ \log_2(0.125) = \log_2(2^{-3}) \] ### Step 5: Apply the logarithmic identity Using the property of logarithms that states \( \log_b(a^c) = c \cdot \log_b(a) \), we can simplify: \[ \log_2(2^{-3}) = -3 \cdot \log_2(2) \] ### Step 6: Evaluate \( \log_2(2) \) Since \( \log_2(2) = 1 \), we can substitute this value: \[ -3 \cdot \log_2(2) = -3 \cdot 1 = -3 \] ### Final Answer Thus, the value of \( \log_2(0.125) \) is: \[ \log_2(0.125) = -3 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Find the value of : log _5 0.2

Find the value of : log _ 3 27

Find the value of : log _ 5 ,625

Find the value of : log_(0.2) 5

Find the value of : 4% of 12.5

Find the value of : log_(10) 0.001

Find the value of the following log_0.2 0.008

Find the value of log_(2sqrt3) 1728 .

Find the value of 3^(2log_(9)3) .

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)