Home
Class 9
MATHS
Find the value of : log(0.2) 5...

Find the value of :
` log_(0.2) 5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{0.2} 5 \), we can follow these steps: ### Step 1: Rewrite the base We know that \( 0.2 \) can be expressed as a fraction: \[ 0.2 = \frac{2}{10} = \frac{1}{5} \] Thus, we can rewrite the logarithm: \[ \log_{0.2} 5 = \log_{\frac{1}{5}} 5 \] ### Step 2: Apply the logarithmic identity There is a logarithmic identity that states: \[ \log_{a} b = -\log_{\frac{1}{a}} b \] In our case, we can use this identity: \[ \log_{\frac{1}{5}} 5 = -\log_{5} 5 \] ### Step 3: Evaluate \( \log_{5} 5 \) We know that: \[ \log_{5} 5 = 1 \] because any number to the power of 1 is itself. ### Step 4: Substitute back into the equation Now substituting back, we have: \[ \log_{\frac{1}{5}} 5 = -\log_{5} 5 = -1 \] ### Final Answer Thus, the value of \( \log_{0.2} 5 \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Find the value of : log _5 0.2

Find the value of : log_(10) 0.001

Find the value of : log _ 2 ,0.125

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Find the value of : log _ 5 ,625

If log_(10) 8 = 0.90 , find the value of : (i) log_(10)4 (ii) log sqrt(32) (iii) log 0.125

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If (log)_(10)2=0. 3010\ &(log)_(10)3=0. 4771.\ Find the value of (log)_(10)(2. 25)

If log2=0.3010andlog3=0.4771 , find the value of log 5

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)