Home
Class 9
MATHS
If log 4= 0.602 and log 27 = 1.431 , fin...

If log 4= 0.602 and log 27 = 1.431 , find :
` log 8 `

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log 8 \) using the given values of \( \log 4 \) and \( \log 27 \), we can follow these steps: ### Step 1: Express \( \log 8 \) in terms of \( \log 2 \) We know that \( 8 \) can be expressed as \( 2^3 \). Therefore, we can use the logarithmic identity: \[ \log 8 = \log(2^3) = 3 \log 2 \] ### Step 2: Find \( \log 2 \) using \( \log 4 \) We know that \( 4 \) can be expressed as \( 2^2 \). Thus, we can write: \[ \log 4 = \log(2^2) = 2 \log 2 \] Given that \( \log 4 = 0.602 \), we can set up the equation: \[ 2 \log 2 = 0.602 \] ### Step 3: Solve for \( \log 2 \) To find \( \log 2 \), we can divide both sides of the equation by 2: \[ \log 2 = \frac{0.602}{2} = 0.301 \] ### Step 4: Substitute \( \log 2 \) back into the expression for \( \log 8 \) Now that we have \( \log 2 \), we can substitute it back into our expression for \( \log 8 \): \[ \log 8 = 3 \log 2 = 3 \times 0.301 \] ### Step 5: Calculate \( \log 8 \) Now we can perform the multiplication: \[ \log 8 = 3 \times 0.301 = 0.903 \] ### Final Answer Thus, the value of \( \log 8 \) is: \[ \log 8 = 0.903 \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If log 4= 0.602 and log 27 = 1.431 , find : log 12

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 12 (ii) log 1.2 (iii) log 3.6 (iv) log 15 (v) log 25 (vi) (2)/(3) log 8

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

If log 27 = 1.431, find the value of : (i) log 9 (ii) log 300

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

(i) If log(a + 1) = log(4a - 3) - log 3, find a. (ii) If 2 log y - log x - 3 = 0, express x in termss of y. (iii) Prove that : log_(10) 125 = 3(1 - log_(10)2) .

Find x, if : x - log 48 + 3 log 2 = (1)/(3) log 125 - log 3 .

If (log)_a3=2 and (log)_b8=3 , then prove that (log)_a b=(log)_3 4.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)