Home
Class 9
MATHS
Express in terms of log 2 and log 3 : ...

Express in terms of log 2 and log 3 :
` log ""(sqrt(54) xx ""^(3) sqrt(243))`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \log \left( \sqrt{54} \times \left( \sqrt{243} \right)^{\frac{1}{3}} \right) \) in terms of \( \log 2 \) and \( \log 3 \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \log \left( \sqrt{54} \times \left( \sqrt{243} \right)^{\frac{1}{3}} \right) \] Using the property of logarithms that states \( \log(a \times b) = \log a + \log b \), we can separate the logarithm: \[ \log \left( \sqrt{54} \right) + \log \left( \left( \sqrt{243} \right)^{\frac{1}{3}} \right) \] ### Step 2: Simplify each term Now we simplify each term: 1. For \( \log \left( \sqrt{54} \right) \): \[ \log \left( \sqrt{54} \right) = \log \left( 54^{\frac{1}{2}} \right) = \frac{1}{2} \log 54 \] 2. For \( \log \left( \left( \sqrt{243} \right)^{\frac{1}{3}} \right) \): \[ \log \left( \left( \sqrt{243} \right)^{\frac{1}{3}} \right) = \frac{1}{3} \log \left( \sqrt{243} \right) = \frac{1}{3} \cdot \frac{1}{2} \log 243 = \frac{1}{6} \log 243 \] Combining these, we have: \[ \frac{1}{2} \log 54 + \frac{1}{6} \log 243 \] ### Step 3: Express 54 and 243 in terms of their prime factors Next, we express \( 54 \) and \( 243 \) in terms of their prime factors: - \( 54 = 2 \times 3^3 \) - \( 243 = 3^5 \) Thus, we can rewrite the logarithms: 1. For \( \log 54 \): \[ \log 54 = \log (2 \times 3^3) = \log 2 + \log (3^3) = \log 2 + 3 \log 3 \] 2. For \( \log 243 \): \[ \log 243 = \log (3^5) = 5 \log 3 \] ### Step 4: Substitute back into the expression Now substituting these back into our expression: \[ \frac{1}{2} (\log 2 + 3 \log 3) + \frac{1}{6} (5 \log 3) \] ### Step 5: Simplify the expression Distributing the coefficients: \[ \frac{1}{2} \log 2 + \frac{3}{2} \log 3 + \frac{5}{6} \log 3 \] Now, combine the terms involving \( \log 3 \): \[ \frac{1}{2} \log 2 + \left( \frac{3}{2} + \frac{5}{6} \right) \log 3 \] To combine \( \frac{3}{2} \) and \( \frac{5}{6} \), we find a common denominator (which is 6): \[ \frac{3}{2} = \frac{9}{6} \] So, \[ \frac{9}{6} + \frac{5}{6} = \frac{14}{6} = \frac{7}{3} \] ### Final Expression Thus, the final expression is: \[ \frac{1}{2} \log 2 + \frac{7}{3} \log 3 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Express in terms of log 2 and log 3 : log ""( sqrt8)/(27)

Express in terms of log 2 and log 3 : (i) log 36 (ii) log 144 (iii) log 4.5 (iv) "log"(26)/(51) - "log" (91)/(119) (v) "log"(75)/(16) - "2 log" (5)/(9) + "log" (32)/(243)

log_(3sqrt(2))324

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

The value of sqrt(4 xx "log"_(0.5)2) , is

Which is/are true ? (A) log_(0.2)3lt log_(2)3 (B) log_(sqrt(5))10ltlog _(sqrt(3))11 (C) log_(sqrt(3))10gtlog _(sqrt(5))11 (D) log _((2-sqrt3))(7-4sqrt(3))gtlog_((sqrt(3)-1))(4-2sqrt(3))

If log_(10)2 = a and log_(10) 3 = b , express each of the following in terms of 'a' and 'b' : (i) log 12 (ii) log 2.25 (iii) "log"_(2) (1)/(4) (iv) log 5.4 (v) log 60 (vi) "log 3" (1)/(8)

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is