Home
Class 9
MATHS
Simplify : log""(75)/( 16) - 2 log "...

Simplify :
` log""(75)/( 16) - 2 log ""( 5)/(9) +log""( 32)/(243)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \frac{\log 75}{16} - 2 \frac{\log 5}{9} + \frac{\log 32}{243} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{\log 75}{16} - 2 \frac{\log 5}{9} + \frac{\log 32}{243} \] ### Step 2: Use the properties of logarithms Using the property \( \log \frac{a}{b} = \log a - \log b \), we can rewrite each term: \[ \log 75 - \log 16 - 2 (\log 5 - \log 9) + \log 32 - \log 243 \] ### Step 3: Expand the expression Now, we can expand the expression: \[ \log 75 - \log 16 - 2 \log 5 + 2 \log 9 + \log 32 - \log 243 \] ### Step 4: Substitute known values Next, we can express \( \log 75 \), \( \log 16 \), \( \log 32 \), and \( \log 243 \) in terms of their prime factors: - \( \log 75 = \log(25 \cdot 3) = \log(5^2 \cdot 3) = 2 \log 5 + \log 3 \) - \( \log 16 = \log(4^2) = 2 \log 4 = 2 \cdot 2 \log 2 = 4 \log 2 \) - \( \log 32 = \log(2^5) = 5 \log 2 \) - \( \log 243 = \log(3^5) = 5 \log 3 \) Substituting these into our expression gives: \[ (2 \log 5 + \log 3) - 4 \log 2 - 2 \log 5 + 2 \log 9 + 5 \log 2 - 5 \log 3 \] ### Step 5: Combine like terms Now we combine the terms: - For \( \log 5 \): \( 2 \log 5 - 2 \log 5 = 0 \) - For \( \log 3 \): \( \log 3 + 2 \log 9 - 5 \log 3 = \log 3 + 4 \log 3 - 5 \log 3 = 0 \) - For \( \log 2 \): \( -4 \log 2 + 5 \log 2 = 1 \log 2 \) ### Step 6: Final result The simplified expression is: \[ \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Simplify : 2 log ""( 15)/(8) - log ""( 25)/( 162) +3 log ""( 4)/(9)

Express in terms of log 2 and log 3 : (i) log 36 (ii) log 144 (iii) log 4.5 (iv) "log"(26)/(51) - "log" (91)/(119) (v) "log"(75)/(16) - "2 log" (5)/(9) + "log" (32)/(243)

Simplify : (i) log(a)^(3) - log a (ii) log(a)^(3) div log a

Prove that : "2 log" (15)/(18) - "log" (25)/(162) + "log" (4)/(9) = log 2

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Simplify: 2^((log)_3 5)-5^((log)_3 2)

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

If lot 7- log 2 + log 16 - 2 log3 - log "" (7)/(45)= 1 + log k, find the value of k.