Home
Class 9
MATHS
Simplify : 2 log ""( 15)/(8) - log "...

Simplify :
` 2 log ""( 15)/(8) - log ""( 25)/( 162) +3 log ""( 4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2 \log \frac{15}{8} - \log \frac{25}{162} + 3 \log \frac{4}{9} \), we can follow these steps: ### Step 1: Rewrite the Logs We start by rewriting the logarithmic expressions using the properties of logarithms. The property we will use is: \[ \log \frac{A}{B} = \log A - \log B \] Using this property, we can rewrite each term: \[ 2 \log \frac{15}{8} = 2 (\log 15 - \log 8) = 2 \log 15 - 2 \log 8 \] \[ -\log \frac{25}{162} = -(\log 25 - \log 162) = -\log 25 + \log 162 \] \[ 3 \log \frac{4}{9} = 3 (\log 4 - \log 9) = 3 \log 4 - 3 \log 9 \] So the expression becomes: \[ 2 \log 15 - 2 \log 8 - \log 25 + \log 162 + 3 \log 4 - 3 \log 9 \] ### Step 2: Substitute Known Values Next, we can express the numbers in terms of their prime factors: - \( 15 = 3 \times 5 \) - \( 8 = 2^3 \) - \( 25 = 5^2 \) - \( 162 = 2 \times 3^4 \) - \( 4 = 2^2 \) - \( 9 = 3^2 \) Now substituting these values into the logarithm: \[ 2 \log (3 \times 5) - 2 \log (2^3) - \log (5^2) + \log (2 \times 3^4) + 3 \log (2^2) - 3 \log (3^2) \] ### Step 3: Apply Logarithmic Properties Using the properties \( \log (AB) = \log A + \log B \) and \( \log (A^n) = n \log A \): \[ 2 (\log 3 + \log 5) - 2 (3 \log 2) - 2 \log 5 + (\log 2 + 4 \log 3) + 3 (2 \log 2) - 3 (2 \log 3) \] This simplifies to: \[ 2 \log 3 + 2 \log 5 - 6 \log 2 - 2 \log 5 + \log 2 + 4 \log 3 + 6 \log 2 - 6 \log 3 \] ### Step 4: Combine Like Terms Now, we can combine like terms: - For \( \log 3 \): \[ (2 \log 3 + 4 \log 3 - 6 \log 3) = 0 \log 3 = 0 \] - For \( \log 5 \): \[ (2 \log 5 - 2 \log 5) = 0 \log 5 = 0 \] - For \( \log 2 \): \[ (-6 \log 2 + \log 2 + 6 \log 2) = 1 \log 2 = \log 2 \] ### Final Result Thus, the entire expression simplifies to: \[ \log 2 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Prove that : "2 log" (15)/(18) - "log" (25)/(162) + "log" (4)/(9) = log 2

Simplify : log""(75)/( 16) - 2 log ""( 5)/(9) +log""( 32)/(243)

Simplify : (i) log(a)^(3) - log a (ii) log(a)^(3) div log a

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Express in terms of log 2 and log 3 : (i) log 36 (ii) log 144 (iii) log 4.5 (iv) "log"(26)/(51) - "log" (91)/(119) (v) "log"(75)/(16) - "2 log" (5)/(9) + "log" (32)/(243)

Simplify: 2^((log)_3 5)-5^((log)_3 2)

(i) Show that (log 9)/2 + 2 log 6 +(log 81)/4 - log 12 = 3 log 3 .

prove that log2 + 16 log(16/15) + 12 log(25/24) + 7 log(81/80) = 1