Home
Class 9
MATHS
Let log x= 2m - 3n and log y = 3n - ...

Let ` log x= 2m - 3n and log y = 3n - 2m ` Find the value of log `(x^(3) /y ^(2)) ` in terms of m and n.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log \left( \frac{x^3}{y^2} \right) \) in terms of \( m \) and \( n \), we will follow these steps: ### Step 1: Write down the given logarithmic expressions We have: \[ \log x = 2m - 3n \] \[ \log y = 3n - 2m \] ### Step 2: Use the logarithmic property for powers Using the property \( \log a^n = n \log a \), we can find \( \log x^3 \) and \( \log y^2 \). For \( \log x^3 \): \[ \log x^3 = 3 \log x = 3(2m - 3n) = 6m - 9n \] For \( \log y^2 \): \[ \log y^2 = 2 \log y = 2(3n - 2m) = 6n - 4m \] ### Step 3: Use the logarithmic property for division Now we can use the property \( \log \left( \frac{a}{b} \right) = \log a - \log b \): \[ \log \left( \frac{x^3}{y^2} \right) = \log x^3 - \log y^2 \] ### Step 4: Substitute the values we found Substituting the values we calculated: \[ \log \left( \frac{x^3}{y^2} \right) = (6m - 9n) - (6n - 4m) \] ### Step 5: Simplify the expression Now simplify the expression: \[ \log \left( \frac{x^3}{y^2} \right) = 6m - 9n - 6n + 4m \] Combine like terms: \[ = (6m + 4m) + (-9n - 6n) = 10m - 15n \] ### Final Answer Thus, the value of \( \log \left( \frac{x^3}{y^2} \right) \) in terms of \( m \) and \( n \) is: \[ \log \left( \frac{x^3}{y^2} \right) = 10m - 15n \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Given log x = m + n and log y = m - n, express the value of "log" (10 x)/(y^(2)) in terms of m and n.

If log xy^(3) = m and log x ^(3) y ^(2) = p, " find " log (x^(2) -: y) in terms of m and p.

Given log x = 2m - n, log y = n - 2m and log z = 3m - 2n, find in terms of m and n, the value of "log" (x^(2)y^(3))/(z^(4)) .

If log_(a)m = n , express a^(n-1) in terms of a and m.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

Given log_(2)x = m and log_(5) y = n (i) Express 2^(m-3) in terms of x. (ii) Express 5^(3n + 2) in terms of y.

If 3 log sqrtm + 2 log ""^(3) sqrtn = 1. find the value of m^(9) n^(4) .

If m = log 20 and n = log 25, find the value of x, so that : 2 log(x - 4) = 2m - n.

Given 3 log x + (1)/(2) log y = 2 , express y in term of x.