Home
Class 9
MATHS
Find x, if : 2 + log x = log 45 - l...

Find x, if :
` 2 + log x = log 45 - log 2 + log 16 - 2 log 3. `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 + \log x = \log 45 - \log 2 + \log 16 - 2 \log 3 \), we will follow these steps: ### Step 1: Simplify the Right Side We start with the right side of the equation: \[ \log 45 - \log 2 + \log 16 - 2 \log 3 \] Using the logarithmic property \( \log a - \log b = \log \left( \frac{a}{b} \right) \) and \( n \log a = \log(a^n) \), we can rewrite \( -2 \log 3 \) as \( \log(3^2) = \log 9 \). Thus, we have: \[ \log 45 - \log 2 + \log 16 - \log 9 \] ### Step 2: Combine the Logarithms Now, we can combine the logarithms: \[ \log \left( \frac{45 \times 16}{2 \times 9} \right) \] This simplifies to: \[ \log \left( \frac{720}{18} \right) = \log 40 \] ### Step 3: Rewrite the Left Side Now, we rewrite the left side of the equation: \[ 2 + \log x = \log 40 \] We can express \( 2 \) as \( \log(10^2) = \log 100 \). Therefore, we can rewrite the left side as: \[ \log 100 + \log x = \log 40 \] ### Step 4: Combine the Left Side Using the property of logarithms \( \log a + \log b = \log(ab) \), we have: \[ \log(100x) = \log 40 \] ### Step 5: Remove the Logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ 100x = 40 \] ### Step 6: Solve for x Now, we solve for \( x \): \[ x = \frac{40}{100} = 0.4 \] Thus, the value of \( x \) is: \[ \boxed{0.4} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

Find x, if : x - log 48 + 3 log 2 = (1)/(3) log 125 - log 3 .

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Express each of the following in a form free from logarithm : (i) 2 log x - log y = 1 (ii) 2 log x + 3 log y = log a (iii) a log x - b log y = 2 log 3

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

Express in terms of log 2 and log 3 : (i) log 36 (ii) log 144 (iii) log 4.5 (iv) "log"(26)/(51) - "log" (91)/(119) (v) "log"(75)/(16) - "2 log" (5)/(9) + "log" (32)/(243)

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)