Home
Class 9
MATHS
If l= log "" ( 5)/(7) , m = log ""( 7...

If l= `log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5)` , find the value of
` l+ m + n `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( l + m + n \) where: - \( l = \log \frac{5}{7} \) - \( m = \log \frac{7}{9} \) - \( n = 2(\log 3 - \log \sqrt{5}) \) ### Step-by-Step Solution: 1. **Write down the expressions for \( l \), \( m \), and \( n \)**: \[ l = \log \frac{5}{7}, \quad m = \log \frac{7}{9}, \quad n = 2(\log 3 - \log \sqrt{5}) \] 2. **Combine \( l \) and \( m \)**: Using the property of logarithms that states \( \log a + \log b = \log(ab) \): \[ l + m = \log \frac{5}{7} + \log \frac{7}{9} = \log \left( \frac{5}{7} \cdot \frac{7}{9} \right) \] The \( 7 \) in the numerator and denominator cancels out: \[ l + m = \log \frac{5}{9} \] 3. **Simplify \( n \)**: We know that \( \log \sqrt{5} = \frac{1}{2} \log 5 \), thus: \[ n = 2(\log 3 - \log \sqrt{5}) = 2\left(\log 3 - \frac{1}{2} \log 5\right) = 2\log 3 - \log 5 \] 4. **Combine \( l + m + n \)**: Now, we add \( n \) to \( l + m \): \[ l + m + n = \log \frac{5}{9} + (2\log 3 - \log 5) \] We can rewrite \( 2\log 3 \) as \( \log 3^2 \): \[ l + m + n = \log \frac{5}{9} + \log 9 - \log 5 \] 5. **Combine the logarithmic terms**: Using the property \( \log a - \log b = \log \left( \frac{a}{b} \right) \): \[ l + m + n = \log \frac{5 \cdot 9}{9 \cdot 5} = \log 1 \] 6. **Final result**: Since \( \log 1 = 0 \): \[ l + m + n = 0 \] ### Final Answer: \[ l + m + n = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If = log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of 7^(l+ m + n )

If m = log 20 and n = log 25, find the value of x, so that : 2 log(x - 4) = 2m - n.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If 3 log sqrtm + 2 log ""^(3) sqrtn = 1. find the value of m^(9) n^(4) .

If lot 7- log 2 + log 16 - 2 log3 - log "" (7)/(45)= 1 + log k, find the value of k.

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.