Home
Class 9
MATHS
If = log "" ( 5)/(7) , m = log ""( 7)/...

If = `log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5)` , find the value of
` 7^(l+ m + n ) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 7^{L + M + N} \) where \( L = \log \frac{5}{7} \), \( M = \log \frac{7}{9} \), and \( N = 2(\log 3 - \log \sqrt{5}) \). ### Step-by-Step Solution: 1. **Write down the given values**: \[ L = \log \frac{5}{7}, \quad M = \log \frac{7}{9}, \quad N = 2(\log 3 - \log \sqrt{5}) \] 2. **Simplify \( N \)**: \[ N = 2(\log 3 - \log \sqrt{5}) = 2(\log 3 - \log 5^{1/2}) = 2(\log 3 - \frac{1}{2} \log 5) \] Using the property \( c \cdot \log a = \log a^c \): \[ N = 2\log 3 - \log 5 = \log 3^2 - \log 5 = \log 9 - \log 5 \] Using the property \( \log a - \log b = \log \frac{a}{b} \): \[ N = \log \frac{9}{5} \] 3. **Combine \( L + M + N \)**: \[ L + M + N = \log \frac{5}{7} + \log \frac{7}{9} + \log \frac{9}{5} \] Using the property \( \log a + \log b = \log(ab) \): \[ L + M + N = \log \left( \frac{5}{7} \cdot \frac{7}{9} \cdot \frac{9}{5} \right) \] 4. **Simplify the expression inside the logarithm**: \[ \frac{5}{7} \cdot \frac{7}{9} \cdot \frac{9}{5} = \frac{5 \cdot 7 \cdot 9}{7 \cdot 9 \cdot 5} = 1 \] Thus, \[ L + M + N = \log 1 \] 5. **Evaluate \( \log 1 \)**: \[ \log 1 = 0 \] 6. **Find \( 7^{L + M + N} \)**: \[ 7^{L + M + N} = 7^0 = 1 \] ### Final Answer: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Triangles|18 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Inequalities|5 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

If l= log "" ( 5)/(7) , m = log ""( 7)/(9) and n = 2 ( log 3 - log sqrt5) , find the value of l+ m + n

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If m = log 20 and n = log 25, find the value of x, so that : 2 log(x - 4) = 2m - n.

If 3 log sqrtm + 2 log ""^(3) sqrtn = 1. find the value of m^(9) n^(4) .

If lot 7- log 2 + log 16 - 2 log3 - log "" (7)/(45)= 1 + log k, find the value of k.

Let log x= 2m - 3n and log y = 3n - 2m Find the value of log (x^(3) /y ^(2)) in terms of m and n.

Given 3 (log 5 - log 3 ) - ( log 5 - 3 log 6 ) = 2- log m, find m.

If log 2 = 0.3010 and log 3 = 0.4771, find the value of : (i) log 6 (ii) log 5 (iii) log sqrt(24)

If a = "log"2, b = "log" 3, c ="log" 7 " and " 6^(x) = 7^(x+4) then x=